seiching's picture
update model card README.md
4552303
metadata
language:
  - zh
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper medium zh - seiching
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13
          type: mozilla-foundation/common_voice_13_0
          config: zh-TW
          split: test
          args: zh-TW
        metrics:
          - name: Wer
            type: wer
            value: 37.69215412257936

Whisper medium zh - seiching

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 13 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2083
  • Wer Ortho: 37.9482
  • Wer: 37.6922

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.1472 0.69 500 0.1579 36.6425 36.4544
0.0545 1.38 1000 0.1685 37.4093 37.4725
0.0227 2.06 1500 0.1751 37.5544 37.9118
0.0262 2.75 2000 0.1885 37.9689 37.4925
0.0203 3.44 2500 0.2042 37.2228 36.7938
0.0123 4.13 3000 0.2065 38.3834 37.9916
0.0121 4.81 3500 0.2065 37.6373 37.7720
0.0151 5.5 4000 0.2083 37.9482 37.6922

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.13.2
  • Tokenizers 0.13.3