seddiktrk's picture
Update README.md
90f47ff verified
|
raw
history blame
3.29 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-clinc
    results: []

distilbert-base-uncased-finetuned-clinc

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7872
  • Accuracy: 0.9206

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 318 3.2931 0.7255
3.8009 2.0 636 1.8849 0.8526
3.8009 3.0 954 1.1702 0.8897
1.7128 4.0 1272 0.8717 0.9145
0.9206 5.0 1590 0.7872 0.9206

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1

How to use

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-cased')
>>> unmasker("Hello I'm a [MASK] model.")

[{'sequence': "[CLS] Hello I'm a fashion model. [SEP]",
  'score': 0.09019174426794052,
  'token': 4633,
  'token_str': 'fashion'},
 {'sequence': "[CLS] Hello I'm a new model. [SEP]",
  'score': 0.06349995732307434,
  'token': 1207,
  'token_str': 'new'},
 {'sequence': "[CLS] Hello I'm a male model. [SEP]",
  'score': 0.06228214129805565,
  'token': 2581,
  'token_str': 'male'},
 {'sequence': "[CLS] Hello I'm a professional model. [SEP]",
  'score': 0.0441727414727211,
  'token': 1848,
  'token_str': 'professional'},
 {'sequence': "[CLS] Hello I'm a super model. [SEP]",
  'score': 0.03326151892542839,
  'token': 7688,
  'token_str': 'super'}]

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = BertModel.from_pretrained("bert-base-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

and in TensorFlow:

from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = TFBertModel.from_pretrained("bert-base-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)