Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- ru
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
- roc_auc
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
pipeline_tag: text-classification
|
11 |
+
tags:
|
12 |
+
- rubert
|
13 |
+
- emotion
|
14 |
+
- emotion-classification
|
15 |
+
datasets:
|
16 |
+
- cedr
|
17 |
+
---
|
18 |
+
|
19 |
+
This is [RuBERT-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) model fine-tuned for __emotion classification__ of short __Russian__ texts.
|
20 |
+
The task is a __multi-label classification__ with the following labels:
|
21 |
+
|
22 |
+
```yaml
|
23 |
+
0: no_emotion
|
24 |
+
1: joy
|
25 |
+
2: sadness
|
26 |
+
3: surprise
|
27 |
+
4: fear
|
28 |
+
5: anger
|
29 |
+
```
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
|
33 |
+
```python
|
34 |
+
from transformers import pipeline
|
35 |
+
model = pipeline(model="seara/rubert-tiny2-cedr")
|
36 |
+
model("Привет, ты мне нравишься!")
|
37 |
+
# [{'label': 'joy', 'score': 0.9605025053024292}]
|
38 |
+
```
|
39 |
+
|
40 |
+
## Dataset
|
41 |
+
|
42 |
+
This model was trained on the [CEDR dataset](https://huggingface.co/datasets/cedr).
|
43 |
+
|
44 |
+
An overview of the training data can be found in the source [article](https://www.sciencedirect.com/science/article/pii/S1877050921013247).
|
45 |
+
|
46 |
+
## Training
|
47 |
+
|
48 |
+
Training were done in this [project](https://github.com/searayeah/vkr-bert) with this parameters:
|
49 |
+
|
50 |
+
```yaml
|
51 |
+
tokenizer.max_length: null
|
52 |
+
batch_size: 64
|
53 |
+
optimizer: adam
|
54 |
+
lr: 0.00001
|
55 |
+
weight_decay: 0
|
56 |
+
num_epochs: 30
|
57 |
+
```
|
58 |
+
|
59 |
+
## Eval results (on test split)
|
60 |
+
|
61 |
+
| |no_emotion|joy |sadness|surprise|fear |anger |micro avg|macro avg|weighted avg|samples avg|
|
62 |
+
|---------|----------|------|-------|--------|-------|------|---------|---------|------------|-----------|
|
63 |
+
|precision|0.8176 |0.8371|0.8425 |0.7902 |0.7833 |0.5467|0.811 |0.7696 |0.8034 |0.7811 |
|
64 |
+
|recall |0.8365 |0.83 |0.847 |0.6647 |0.6667 |0.328 |0.776 |0.6955 |0.776 |0.7792 |
|
65 |
+
|f1-score |0.8269 |0.8336|0.8447 |0.722 |0.7203 |0.41 |0.7931 |0.7263 |0.787 |0.7788 |
|
66 |
+
|support |734.0 |353.0 |379.0 |170.0 |141.0 |125.0 |1902.0 |1902.0 |1902.0 |1902.0 |
|
67 |
+
|auc-roc |0.9241 |0.9649|0.9557 |0.913 |0.9118 |0.7732|0.9355 |0.9071 |0.9261 | |
|