seara's picture
Update README.md
426cf82 verified
---
license: mit
language:
- ru
metrics:
- f1
- roc_auc
- precision
- recall
pipeline_tag: text-classification
tags:
- sentiment-analysis
- multi-label-classification
- sentiment analysis
- rubert
- sentiment
- bert
- tiny
- russian
- multilabel
- classification
- emotion-classification
- emotion-recognition
- emotion
- emotion-detection
datasets:
- cedr
---
This is [RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased) model fine-tuned for __emotion classification__ of short __Russian__ texts.
The task is a __multi-label classification__ with the following labels:
```yaml
0: no_emotion
1: joy
2: sadness
3: surprise
4: fear
5: anger
```
Label to Russian label:
```yaml
no_emotion: нет эмоции
joy: радость
sadness: грусть
surprise: удивление
fear: страх
anger: злость
```
## Usage
```python
from transformers import pipeline
model = pipeline(model="seara/rubert-base-cased-cedr-russian-emotion")
model("Привет, ты мне нравишься!")
# [{'label': 'joy', 'score': 0.9388909935951233}]
```
## Dataset
This model was trained on [CEDR dataset](https://huggingface.co/datasets/cedr).
An overview of the training data can be found in it's [Hugging Face card](https://huggingface.co/datasets/cedr)
or in the source [article](https://www.sciencedirect.com/science/article/pii/S1877050921013247).
## Training
Training were done in this [project](https://github.com/searayeah/bert-russian-sentiment-emotion) with this parameters:
```yaml
tokenizer.max_length: null
batch_size: 64
optimizer: adam
lr: 0.00001
weight_decay: 0
num_epochs: 5
```
## Eval results (on test split)
| |no_emotion|joy |sadness|surprise|fear |anger|micro avg|macro avg|weighted avg|
|---------|----------|------|-------|--------|-------|-----|---------|---------|------------|
|precision|0.87 |0.84 |0.85 |0.74 |0.7 |0.66 |0.83 |0.78 |0.83 |
|recall |0.84 |0.86 |0.82 |0.71 |0.74 |0.33 |0.79 |0.72 |0.79 |
|f1-score |0.86 |0.85 |0.84 |0.72 |0.72 |0.44 |0.81 |0.74 |0.8 |
|auc-roc |0.95 |0.97 |0.96 |0.94 |0.93 |0.86 |0.95 |0.93 |0.95 |
|support |734 |353 |379 |170 |141 |125 |1902 |1902 |1902 |