|
--- |
|
license: cc-by-4.0 |
|
library_name: scvi-tools |
|
tags: |
|
- biology |
|
- genomics |
|
- single-cell |
|
- model_cls_name:CondSCVI |
|
- scvi_version:0.20.0b1 |
|
- anndata_version:0.8.0 |
|
- modality:rna |
|
- tissue:Uterus |
|
- annotated:True |
|
--- |
|
|
|
# Description |
|
|
|
Tabula sapiens. An across organ dataset of cell-types in human tissues. |
|
|
|
# Model properties |
|
|
|
Many model properties are in the model tags. Some more are listed below. |
|
|
|
**model_init_params**: |
|
```json |
|
{ |
|
"n_hidden": 128, |
|
"n_latent": 5, |
|
"n_layers": 2, |
|
"weight_obs": false, |
|
"dropout_rate": 0.05 |
|
} |
|
``` |
|
|
|
**model_setup_anndata_args**: |
|
```json |
|
{ |
|
"labels_key": "cell_ontology_class", |
|
"layer": null |
|
} |
|
``` |
|
|
|
**model_summary_stats**: |
|
| Summary Stat Key | Value | |
|
|------------------|-------| |
|
| n_cells | 5112 | |
|
| n_labels | 18 | |
|
| n_vars | 4000 | |
|
|
|
**model_data_registry**: |
|
| Registry Key | scvi-tools Location | |
|
|--------------|---------------------------| |
|
| X | adata.X | |
|
| labels | adata.obs['_scvi_labels'] | |
|
|
|
**model_parent_module**: scvi.model |
|
|
|
**data_is_minified**: False |
|
|
|
# Training data |
|
|
|
This is an optional link to where the training data is stored if it is too large |
|
to host on the huggingface Model hub. |
|
|
|
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make |
|
sure to provide this field if you want users to be able to access your training data. See the scvi-tools |
|
documentation for details. --> |
|
|
|
Training data url: https://zenodo.org/api/files/fd2c61e6-f4cd-4984-ade0-24d26d9adef6/TS_Uterus_filtered.h5ad |
|
|
|
# Training code |
|
|
|
This is an optional link to the code used to train the model. |
|
|
|
Training code url: https://github.com/scvi-hub-references/tabula_sapiens/main.py |
|
|
|
# References |
|
|
|
The Tabula Sapiens: A multi-organ, single-cell transcriptomic atlas of humans. The Tabula Sapiens Consortium. Science 2022.05.13; doi: https: //doi.org/10.1126/science.abl4896 |