|
--- |
|
library_name: scvi-tools |
|
license: cc-by-4.0 |
|
tags: |
|
- biology |
|
- genomics |
|
- single-cell |
|
- model_cls_name:TOTALVI |
|
- scvi_version:1.2.0 |
|
- anndata_version:0.11.1 |
|
- modality:rna |
|
- modality:protein |
|
- tissue:thymus |
|
- annotated:True |
|
--- |
|
|
|
|
|
TotalVI is a variational inference model for single-cell RNA-seq as well as protein data that can |
|
learn an underlying latent space, integrate technical batches, impute dropouts, |
|
and predict protein expression given gene expression or missing protein data given gene expression |
|
and protein data for a subset of proteins. |
|
The learned low-dimensional latent representation of the data can be used for visualization and |
|
clustering. |
|
|
|
TotalVI takes as input a scRNA-seq gene expression and protein expression matrix with cells and |
|
genes. |
|
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/totalvi.html). |
|
|
|
- See our original manuscript for further details of the model: |
|
[TotalVI manuscript](https://www.nature.com/articles/s41592-020-01050-x). |
|
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) |
|
how to leverage pre-trained models. |
|
|
|
This model can be used for fine tuning on new data using our Arches framework: |
|
[Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html). |
|
|
|
|
|
# Model Description |
|
|
|
CITE-seq to measure RNA and surface proteins in thymocytes from wild-type and T cell lineage-restricted mice to generate a comprehensive timeline of cell state for each T cell lineage. |
|
|
|
# Metrics |
|
|
|
We provide here key performance metrics for the uploaded model, if provided by the data uploader. |
|
|
|
<details> |
|
<summary><strong>Coefficient of variation</strong></summary> |
|
|
|
The cell-wise coefficient of variation summarizes how well variation between different cells is |
|
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4 |
|
, we would recommend not to use generated data for downstream analysis, while the generated latent |
|
space might still be useful for analysis. |
|
|
|
**Cell-wise Coefficient of Variation**: |
|
|
|
Modality: rna |
|
|
|
| Metric | Training Value | Validation Value | |
|
|-------------------------|----------------|------------------| |
|
| Mean Absolute Error | 0.57 | 0.56 | |
|
| Pearson Correlation | 0.76 | 0.76 | |
|
| Spearman Correlation | 0.83 | 0.83 | |
|
| R² (R-Squared) | -0.10 | -0.08 | |
|
|
|
Modality: protein |
|
|
|
| Metric | Training Value | Validation Value | |
|
|-------------------------|----------------|------------------| |
|
| Mean Absolute Error | 0.32 | 0.32 | |
|
| Pearson Correlation | 0.53 | 0.53 | |
|
| Spearman Correlation | 0.78 | 0.78 | |
|
| R² (R-Squared) | -1.46 | -1.43 | |
|
|
|
|
|
|
|
The gene-wise coefficient of variation summarizes how well variation between different genes is |
|
preserved by the generated model expression. This value is usually quite high. |
|
|
|
**Gene-wise Coefficient of Variation**: |
|
|
|
Modality: rna |
|
|
|
| Metric | Training Value | |
|
|-------------------------|----------------| |
|
| Mean Absolute Error | 26.96 | |
|
| Pearson Correlation | 0.95 | |
|
| Spearman Correlation | 0.99 | |
|
| R² (R-Squared) | -0.25 | |
|
|
|
Modality: protein |
|
|
|
| Metric | Training Value | |
|
|-------------------------|----------------| |
|
| Mean Absolute Error | 4.30 | |
|
| Pearson Correlation | 0.40 | |
|
| Spearman Correlation | 0.73 | |
|
| R² (R-Squared) | -6.19 | |
|
|
|
|
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Differential expression metric</strong></summary> |
|
|
|
The differential expression metric provides a summary of the differential expression analysis |
|
between cell types or input clusters. We provide here the F1-score, Pearson Correlation |
|
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision |
|
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each |
|
cell-type. |
|
|
|
**Differential expression**: |
|
|
|
Modality: rna |
|
|
|
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | |
|
| CD14-positive monocyte | 0.95 | 2.11 | 0.59 | 0.91 | 0.09 | 0.02 | 120843.00 | |
|
| CD16-positive, CD56-dim natural killer cell, human | 0.95 | 2.35 | 0.45 | 0.84 | 0.09 | 0.02 | 92848.00 | |
|
| naive thymus-derived CD4-positive, alpha-beta T cell | 0.89 | 2.76 | 0.39 | 0.75 | 0.09 | 0.02 | 63096.00 | |
|
| effector CD8-positive, alpha-beta T cell | 0.88 | 3.49 | 0.40 | 0.72 | 0.07 | 0.02 | 53534.00 | |
|
| central memory CD4-positive, alpha-beta T cell | 0.93 | 2.59 | 0.34 | 0.74 | 0.06 | 0.02 | 49904.00 | |
|
| naive B cell | 0.93 | 3.29 | 0.40 | 0.72 | 0.08 | 0.02 | 44136.00 | |
|
| naive thymus-derived CD8-positive, alpha-beta T cell | 0.93 | 3.54 | 0.37 | 0.67 | 0.07 | 0.02 | 31175.00 | |
|
| mature NK T cell | 0.91 | 3.62 | 0.44 | 0.63 | 0.04 | 0.01 | 21673.00 | |
|
| effector memory CD8-positive, alpha-beta T cell | 0.82 | 4.47 | 0.37 | 0.56 | 0.07 | 0.02 | 18917.00 | |
|
| T-helper 22 cell | 0.90 | 4.01 | 0.42 | 0.60 | 0.06 | 0.02 | 18379.00 | |
|
| gamma-delta T cell | 0.88 | 4.52 | 0.39 | 0.50 | 0.05 | 0.01 | 15942.00 | |
|
| platelet | 0.89 | 4.32 | 0.54 | 0.67 | 0.06 | 0.02 | 15847.00 | |
|
| T follicular helper cell | 0.93 | 4.43 | 0.41 | 0.55 | 0.06 | 0.02 | 13608.00 | |
|
| mucosal invariant T cell | 0.86 | 4.85 | 0.42 | 0.48 | 0.06 | 0.02 | 10992.00 | |
|
| CD16-negative, CD56-bright natural killer cell, human | 0.85 | 5.29 | 0.38 | 0.44 | 0.05 | 0.02 | 10442.00 | |
|
| class switched memory B cell | 0.89 | 5.17 | 0.45 | 0.49 | 0.08 | 0.02 | 7244.00 | |
|
| immature B cell | 0.89 | 5.66 | 0.45 | 0.45 | 0.10 | 0.02 | 5238.00 | |
|
| natural killer cell | 0.88 | 5.20 | 0.46 | 0.45 | 0.09 | 0.02 | 4963.00 | |
|
| plasmacytoid dendritic cell | 0.90 | 5.18 | 0.46 | 0.46 | 0.05 | 0.02 | 4612.00 | |
|
| CD14-low, CD16-positive monocyte | 0.91 | 4.38 | 0.58 | 0.59 | 0.10 | 0.02 | 4140.00 | |
|
| plasmablast | 0.80 | 4.96 | 0.52 | 0.55 | 0.10 | 0.02 | 4121.00 | |
|
| IgG plasma cell | 0.70 | 5.01 | 0.51 | 0.52 | 0.12 | 0.01 | 3527.00 | |
|
| dendritic cell, human | 0.83 | 5.35 | 0.41 | 0.40 | 0.62 | 0.20 | 3357.00 | |
|
| unswitched memory B cell | 0.92 | 5.08 | 0.49 | 0.47 | 0.17 | 0.02 | 3285.00 | |
|
| myeloid dendritic cell | 0.82 | 5.44 | 0.47 | 0.45 | 0.13 | 0.02 | 3243.00 | |
|
| B cell | 0.86 | 5.03 | 0.51 | 0.48 | 0.14 | 0.02 | 3024.00 | |
|
| IgA plasma cell | 0.70 | 5.22 | 0.50 | 0.49 | 0.13 | 0.02 | 2699.00 | |
|
| effector memory CD4-positive, alpha-beta T cell | 0.88 | 5.17 | 0.48 | 0.41 | 0.14 | 0.02 | 2634.00 | |
|
| malignant cell | 0.94 | 5.40 | 0.48 | 0.45 | 0.28 | 0.02 | 2291.00 | |
|
| CD34-positive, CD38-negative hematopoietic stem cell | 0.78 | 5.68 | 0.46 | 0.47 | 0.12 | 0.02 | 2238.00 | |
|
| erythrocyte | 0.79 | 5.58 | 0.41 | 0.26 | 0.63 | 0.33 | 2232.00 | |
|
| CD8-positive, alpha-beta T cell | 0.84 | 5.28 | 0.48 | 0.39 | 0.35 | 0.03 | 1355.00 | |
|
| IgM plasma cell | 0.78 | 4.70 | 0.53 | 0.50 | 0.30 | 0.02 | 1163.00 | |
|
| ILC1, human | 0.79 | 4.52 | 0.52 | 0.47 | 0.36 | 0.03 | 776.00 | |
|
| erythroid progenitor cell, mammalian | 0.73 | 5.52 | 0.51 | 0.46 | 0.32 | 0.02 | 773.00 | |
|
| monocyte | 0.89 | 4.21 | 0.57 | 0.51 | 0.38 | 0.02 | 649.00 | |
|
| CD4-positive, alpha-beta T cell | 0.81 | 4.64 | 0.54 | 0.48 | 0.33 | 0.02 | 624.00 | |
|
| dendritic cell | 0.75 | 5.15 | 0.50 | 0.41 | 0.47 | 0.03 | 585.00 | |
|
| T-helper 1 cell | 0.86 | 4.12 | 0.55 | 0.51 | 0.35 | 0.02 | 481.00 | |
|
| regulatory T cell | 0.77 | 3.97 | 0.56 | 0.54 | 0.36 | 0.02 | 329.00 | |
|
| hematopoietic precursor cell | 0.68 | 4.34 | 0.60 | 0.57 | 0.30 | 0.02 | 180.00 | |
|
| group 2 innate lymphoid cell, human | 0.66 | 3.08 | 0.58 | 0.63 | 0.26 | 0.02 | 93.00 | |
|
| T-helper 2 cell | 0.65 | 2.71 | 0.62 | 0.67 | 0.18 | 0.02 | 55.00 | |
|
| myeloid lineage restricted progenitor cell | 0.57 | 3.85 | 0.54 | 0.57 | 0.33 | 0.02 | 53.00 | |
|
| megakaryocyte | 0.64 | 3.73 | 0.61 | 0.59 | 0.30 | 0.02 | 53.00 | |
|
| T-helper 17 cell | 0.53 | 2.45 | 0.55 | 0.70 | 0.20 | 0.02 | 13.00 | |
|
|
|
Modality: protein |
|
|
|
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | |
|
| CD14-positive monocyte | 0.95 | 0.07 | 1.00 | 0.99 | 0.26 | 0.12 | 120843.00 | |
|
| CD16-positive, CD56-dim natural killer cell, human | 0.95 | 0.06 | 0.99 | 0.98 | 0.22 | 0.12 | 92848.00 | |
|
| naive thymus-derived CD4-positive, alpha-beta T cell | 0.84 | 0.06 | 0.99 | 0.98 | 0.37 | 0.13 | 63096.00 | |
|
| effector CD8-positive, alpha-beta T cell | 0.95 | 0.05 | 0.99 | 0.97 | 0.17 | 0.09 | 53534.00 | |
|
| central memory CD4-positive, alpha-beta T cell | 1.00 | 0.06 | 1.00 | 0.99 | 0.33 | 0.12 | 49904.00 | |
|
| naive B cell | 1.00 | 0.08 | 1.00 | 0.96 | 0.20 | 0.12 | 44136.00 | |
|
| naive thymus-derived CD8-positive, alpha-beta T cell | 0.95 | 0.07 | 0.99 | 0.95 | 0.13 | 0.08 | 31175.00 | |
|
| mature NK T cell | 0.95 | 0.06 | 0.99 | 0.97 | 0.21 | 0.10 | 21673.00 | |
|
| effector memory CD8-positive, alpha-beta T cell | 0.84 | 0.05 | 0.99 | 0.98 | 0.06 | 0.11 | 18917.00 | |
|
| T-helper 22 cell | 0.95 | 0.06 | 0.99 | 0.98 | 0.11 | 0.08 | 18379.00 | |
|
| gamma-delta T cell | 0.89 | 0.07 | 0.97 | 0.93 | 0.26 | 0.18 | 15942.00 | |
|
| platelet | 0.79 | 0.10 | 0.97 | 0.95 | 0.21 | 0.11 | 15847.00 | |
|
| T follicular helper cell | 1.00 | 0.07 | 1.00 | 0.99 | 0.24 | 0.12 | 13608.00 | |
|
| mucosal invariant T cell | 0.89 | 0.08 | 0.97 | 0.94 | 0.15 | 0.09 | 10992.00 | |
|
| CD16-negative, CD56-bright natural killer cell, human | 0.95 | 0.08 | 0.98 | 0.93 | 0.44 | 0.47 | 10442.00 | |
|
| class switched memory B cell | 0.89 | 0.09 | 0.99 | 0.96 | 0.11 | 0.12 | 7244.00 | |
|
| immature B cell | 0.89 | 0.13 | 0.98 | 0.93 | 0.26 | 0.14 | 5238.00 | |
|
| natural killer cell | 0.89 | 0.06 | 0.98 | 0.98 | 0.68 | 0.70 | 4963.00 | |
|
| plasmacytoid dendritic cell | 0.84 | 0.09 | 0.98 | 0.97 | 0.54 | 0.56 | 4612.00 | |
|
| CD14-low, CD16-positive monocyte | 0.89 | 0.08 | 0.99 | 0.98 | 0.58 | 0.23 | 4140.00 | |
|
| plasmablast | 0.79 | 0.08 | 0.99 | 0.97 | 0.47 | 0.49 | 4121.00 | |
|
| IgG plasma cell | 0.89 | 0.08 | 0.99 | 0.95 | 0.47 | 0.51 | 3527.00 | |
|
| dendritic cell, human | 0.79 | 0.10 | 0.97 | 0.90 | 0.94 | 0.90 | 3357.00 | |
|
| unswitched memory B cell | 0.89 | 0.10 | 0.99 | 0.96 | 0.63 | 0.61 | 3285.00 | |
|
| myeloid dendritic cell | 0.89 | 0.11 | 0.97 | 0.95 | 0.74 | 0.74 | 3243.00 | |
|
| B cell | 0.89 | 0.10 | 0.98 | 0.92 | 0.58 | 0.59 | 3024.00 | |
|
| IgA plasma cell | 0.89 | 0.10 | 0.97 | 0.91 | 0.47 | 0.48 | 2699.00 | |
|
| effector memory CD4-positive, alpha-beta T cell | 0.95 | 0.08 | 0.99 | 0.95 | 0.79 | 0.80 | 2634.00 | |
|
| malignant cell | 0.89 | 0.09 | 0.99 | 0.99 | 0.17 | 0.08 | 2291.00 | |
|
| CD34-positive, CD38-negative hematopoietic stem cell | 0.84 | 0.09 | 0.97 | 0.95 | 0.37 | 0.35 | 2238.00 | |
|
| erythrocyte | 0.89 | 0.07 | 0.99 | 0.98 | 0.21 | 0.25 | 2232.00 | |
|
| CD8-positive, alpha-beta T cell | 0.63 | 0.09 | 0.92 | 0.87 | 0.68 | 0.52 | 1355.00 | |
|
| IgM plasma cell | 0.95 | 0.09 | 0.98 | 0.92 | 0.42 | 0.45 | 1163.00 | |
|
| ILC1, human | 0.84 | 0.10 | 0.97 | 0.89 | 0.53 | 0.55 | 776.00 | |
|
| erythroid progenitor cell, mammalian | 0.68 | 0.14 | 0.95 | 0.93 | 0.23 | 0.23 | 773.00 | |
|
| monocyte | 0.84 | 0.09 | 0.97 | 0.96 | 0.68 | 0.70 | 649.00 | |
|
| CD4-positive, alpha-beta T cell | 0.84 | 0.12 | 0.91 | 0.85 | 0.58 | 0.59 | 624.00 | |
|
| dendritic cell | 0.74 | 0.19 | 0.85 | 0.81 | 0.53 | 0.44 | 585.00 | |
|
| T-helper 1 cell | 0.95 | 0.08 | 0.99 | 0.96 | 0.73 | 0.71 | 481.00 | |
|
| regulatory T cell | 0.84 | 0.14 | 0.97 | 0.94 | 0.89 | 0.84 | 329.00 | |
|
| hematopoietic precursor cell | 0.74 | 0.15 | 0.95 | 0.91 | 0.36 | 0.28 | 180.00 | |
|
| group 2 innate lymphoid cell, human | 0.63 | 0.36 | 0.14 | 0.60 | 0.29 | 0.32 | 93.00 | |
|
| T-helper 2 cell | 0.79 | 0.40 | 0.15 | 0.69 | 0.74 | 0.65 | 55.00 | |
|
| myeloid lineage restricted progenitor cell | 0.53 | 0.28 | 0.97 | 0.74 | 0.56 | 0.37 | 53.00 | |
|
| megakaryocyte | 0.47 | 0.25 | 0.98 | 0.79 | 0.54 | 0.44 | 53.00 | |
|
| T-helper 17 cell | 0.79 | 0.55 | 0.82 | 0.78 | 0.48 | 0.38 | 13.00 | |
|
|
|
|
|
|
|
</details> |
|
|
|
# Model Properties |
|
|
|
We provide here key parameters used to setup and train the model. |
|
|
|
<details> |
|
<summary><strong>Model Parameters</strong></summary> |
|
|
|
These provide the settings to setup the original model: |
|
```json |
|
{ |
|
"n_latent": 20, |
|
"gene_dispersion": "gene", |
|
"protein_dispersion": "protein", |
|
"gene_likelihood": "nb", |
|
"latent_distribution": "normal", |
|
"empirical_protein_background_prior": null, |
|
"override_missing_proteins": false |
|
} |
|
``` |
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Setup Data Arguments</strong></summary> |
|
|
|
Arguments passed to setup_anndata of the original model: |
|
```json |
|
{ |
|
"rna_layer": "counts", |
|
"protein_layer": null, |
|
"batch_key": "donor_id", |
|
"size_factor_key": null, |
|
"categorical_covariate_keys": null, |
|
"continuous_covariate_keys": null, |
|
"modalities": { |
|
"rna_layer": "rna", |
|
"protein_layer": "protein", |
|
"batch_key": "rna" |
|
} |
|
} |
|
``` |
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Data Registry</strong></summary> |
|
|
|
Registry elements for AnnData manager: |
|
| Registry Key | scvi-tools Location | |
|
|--------------------------|--------------------------------------| |
|
| X | adata.mod['rna'].layers['counts'] | |
|
| batch | adata.mod['rna'].obs['_scvi_batch'] | |
|
| labels | adata.obs['_scvi_labels'] | |
|
| latent_qzm | adata.obsm['totalvi_latent_qzm'] | |
|
| latent_qzv | adata.obsm['totalvi_latent_qzv'] | |
|
| minify_type | adata.uns['_scvi_adata_minify_type'] | |
|
| observed_lib_size | adata.obs['observed_lib_size'] | |
|
| proteins | adata.mod['protein'].X | |
|
|
|
- **Data is Minified**: False |
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Summary Statistics</strong></summary> |
|
|
|
| Summary Stat Key | Value | |
|
|--------------------------|-------| |
|
| n_batch | 120 | |
|
| n_cells | 647366 | |
|
| n_extra_categorical_covs | 0 | |
|
| n_extra_continuous_covs | 0 | |
|
| n_labels | 1 | |
|
| n_latent_qzm | 20 | |
|
| n_latent_qzv | 20 | |
|
| n_proteins | 192 | |
|
| n_vars | 4000 | |
|
|
|
</details> |
|
|
|
|
|
<details> |
|
<summary><strong>Training</strong></summary> |
|
|
|
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make |
|
sure to provide this field if you want users to be able to access your training data. See the |
|
scvi-tools documentation for details. --> |
|
**Training data url**: Not provided by uploader |
|
|
|
If provided by the original uploader, for those interested in understanding or replicating the |
|
training process, the code is available at the link below. |
|
|
|
**Training Code URL**: https://github.com/YosefLab/Thymus_CITE-seq/blob/main/totalVI_AllData/totalVI_thymus111.ipynb |
|
|
|
</details> |
|
|
|
|
|
# References |
|
|
|
Steier, Z., Aylard, D.A., McIntyre, L.L. et al. Single-cell multiomic analysis of thymocyte development reveals drivers of CD4+ T cell and CD8+ T cell lineage commitment. Nat Immunol 24, 1579–1590 (2023). https://doi.org/10.1038/s41590-023-01584-0. |
|
|