Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Qwen 2.5-Coder 7B - SecureCode Edition
|
| 2 |
+
|
| 3 |
+
<div align="center">
|
| 4 |
+
|
| 5 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
| 6 |
+
[](https://huggingface.co/datasets/scthornton/securecode-v2)
|
| 7 |
+
[](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct)
|
| 8 |
+
[](https://perfecxion.ai)
|
| 9 |
+
|
| 10 |
+
**Best-in-class code model fine-tuned for security - exceptional code understanding**
|
| 11 |
+
|
| 12 |
+
[π€ Model Card](https://huggingface.co/scthornton/qwen-coder-7b-securecode) | [π Dataset](https://huggingface.co/datasets/scthornton/securecode-v2) | [π» perfecXion.ai](https://perfecxion.ai) | [π Security Research](https://perfecxion.ai/security)
|
| 13 |
+
|
| 14 |
+
</div>
|
| 15 |
+
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
## π― What is This?
|
| 19 |
+
|
| 20 |
+
This is **Qwen 2.5-Coder 7B Instruct** fine-tuned on the **SecureCode v2.0 dataset** - widely recognized as the **best code model available** in the 7B parameter class, now enhanced with production-grade security knowledge.
|
| 21 |
+
|
| 22 |
+
Unlike standard code models that frequently generate vulnerable code, this model combines Qwen's exceptional code understanding with specific training to:
|
| 23 |
+
|
| 24 |
+
β
**Recognize security vulnerabilities** across 11 programming languages
|
| 25 |
+
β
**Generate secure implementations** with defense-in-depth patterns
|
| 26 |
+
β
**Explain complex attack vectors** with concrete exploitation examples
|
| 27 |
+
β
**Provide operational guidance** including SIEM integration, logging, and monitoring
|
| 28 |
+
|
| 29 |
+
**The Result:** The most capable security-aware code model under 10B parameters.
|
| 30 |
+
|
| 31 |
+
**Why Qwen 2.5-Coder?** This model was pre-trained on **5.5 trillion tokens** of code data, giving it:
|
| 32 |
+
- π― **Superior code completion** - Best-in-class for completing partial code
|
| 33 |
+
- π **Deep code understanding** - Exceptional at analyzing complex codebases
|
| 34 |
+
- π **92 programming languages** - Broader language support than competitors
|
| 35 |
+
- π **128K context window** - Can analyze entire files and multi-file contexts
|
| 36 |
+
- β‘ **Fast inference** - Optimized for production deployment
|
| 37 |
+
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
## π¨ The Problem This Solves
|
| 41 |
+
|
| 42 |
+
**AI coding assistants produce vulnerable code in 45% of security-relevant scenarios** (Veracode 2025). Standard code models excel at syntax but lack security awareness.
|
| 43 |
+
|
| 44 |
+
**Real-world costs:**
|
| 45 |
+
- Equifax breach (SQL injection): **$425 million** in damages
|
| 46 |
+
- Capital One (SSRF attack): **100 million** customer records exposed
|
| 47 |
+
- SolarWinds (authentication bypass): **18,000** organizations compromised
|
| 48 |
+
|
| 49 |
+
Qwen 2.5-Coder SecureCode Edition prevents these scenarios by combining world-class code generation with security expertise.
|
| 50 |
+
|
| 51 |
+
---
|
| 52 |
+
|
| 53 |
+
## π‘ Key Features
|
| 54 |
+
|
| 55 |
+
### π Best Code Understanding in Class
|
| 56 |
+
|
| 57 |
+
**Qwen 2.5-Coder** outperforms competitors on code benchmarks:
|
| 58 |
+
- HumanEval: **88.2%** pass@1
|
| 59 |
+
- MBPP: **75.8%** pass@1
|
| 60 |
+
- LiveCodeBench: **35.1%** pass@1
|
| 61 |
+
- Better than CodeLlama 34B and comparable to GPT-4
|
| 62 |
+
|
| 63 |
+
Now with **1,209 security-focused examples** adding vulnerability awareness.
|
| 64 |
+
|
| 65 |
+
### π Security-First Code Generation
|
| 66 |
+
|
| 67 |
+
Trained on real-world security incidents including:
|
| 68 |
+
- **224 examples** of Broken Access Control vulnerabilities
|
| 69 |
+
- **199 examples** of Authentication Failures
|
| 70 |
+
- **125 examples** of Injection attacks (SQL, Command, XSS)
|
| 71 |
+
- **115 examples** of Cryptographic Failures
|
| 72 |
+
- Complete coverage of **OWASP Top 10:2025**
|
| 73 |
+
|
| 74 |
+
### π Multi-Language Security Expertise
|
| 75 |
+
|
| 76 |
+
Fine-tuned on security examples across:
|
| 77 |
+
- Python (Django, Flask, FastAPI)
|
| 78 |
+
- JavaScript/TypeScript (Express, NestJS, React)
|
| 79 |
+
- Java (Spring Boot)
|
| 80 |
+
- Go (Gin framework)
|
| 81 |
+
- PHP (Laravel, Symfony)
|
| 82 |
+
- C# (ASP.NET Core)
|
| 83 |
+
- Ruby (Rails)
|
| 84 |
+
- Rust (Actix, Rocket)
|
| 85 |
+
- **Plus 84 more languages from Qwen's base training**
|
| 86 |
+
|
| 87 |
+
### π Comprehensive Security Context
|
| 88 |
+
|
| 89 |
+
Every response includes:
|
| 90 |
+
1. **Vulnerable implementation** showing what NOT to do
|
| 91 |
+
2. **Secure implementation** with industry best practices
|
| 92 |
+
3. **Attack demonstration** proving the vulnerability is real
|
| 93 |
+
4. **Defense-in-depth guidance** for production deployment
|
| 94 |
+
|
| 95 |
+
---
|
| 96 |
+
|
| 97 |
+
## π Training Details
|
| 98 |
+
|
| 99 |
+
| Parameter | Value |
|
| 100 |
+
|-----------|-------|
|
| 101 |
+
| **Base Model** | Qwen/Qwen2.5-Coder-7B-Instruct |
|
| 102 |
+
| **Fine-tuning Method** | LoRA (Low-Rank Adaptation) |
|
| 103 |
+
| **Training Dataset** | [SecureCode v2.0](https://huggingface.co/datasets/scthornton/securecode-v2) |
|
| 104 |
+
| **Dataset Size** | 841 training examples |
|
| 105 |
+
| **Training Epochs** | 3 |
|
| 106 |
+
| **LoRA Rank (r)** | 16 |
|
| 107 |
+
| **LoRA Alpha** | 32 |
|
| 108 |
+
| **Learning Rate** | 2e-4 |
|
| 109 |
+
| **Quantization** | 4-bit (bitsandbytes) |
|
| 110 |
+
| **Trainable Parameters** | 40.4M (0.53% of 7.6B total) |
|
| 111 |
+
| **Total Parameters** | 7.6B |
|
| 112 |
+
| **Context Window** | 128K tokens (inherited from base) |
|
| 113 |
+
| **GPU Used** | NVIDIA A100 40GB |
|
| 114 |
+
| **Training Time** | ~90 minutes (estimated) |
|
| 115 |
+
|
| 116 |
+
### Training Methodology
|
| 117 |
+
|
| 118 |
+
**LoRA (Low-Rank Adaptation)** preserves Qwen's exceptional code abilities while adding security knowledge:
|
| 119 |
+
- Trains only 0.53% of model parameters
|
| 120 |
+
- Maintains base model's code generation quality
|
| 121 |
+
- Adds security-specific knowledge without catastrophic forgetting
|
| 122 |
+
- Enables deployment with minimal memory overhead
|
| 123 |
+
|
| 124 |
+
**4-bit Quantization** enables efficient training while maintaining model quality.
|
| 125 |
+
|
| 126 |
+
**Extended Context:** Qwen's 128K context window allows analyzing entire source files, making it ideal for security audits of large codebases.
|
| 127 |
+
|
| 128 |
+
---
|
| 129 |
+
|
| 130 |
+
## π Usage
|
| 131 |
+
|
| 132 |
+
### Quick Start
|
| 133 |
+
|
| 134 |
+
```python
|
| 135 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 136 |
+
from peft import PeftModel
|
| 137 |
+
|
| 138 |
+
# Load base model and tokenizer
|
| 139 |
+
base_model = "Qwen/Qwen2.5-Coder-7B-Instruct"
|
| 140 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 141 |
+
base_model,
|
| 142 |
+
device_map="auto",
|
| 143 |
+
torch_dtype="auto",
|
| 144 |
+
trust_remote_code=True
|
| 145 |
+
)
|
| 146 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
| 147 |
+
|
| 148 |
+
# Load SecureCode LoRA adapter
|
| 149 |
+
model = PeftModel.from_pretrained(model, "scthornton/qwen-coder-7b-securecode")
|
| 150 |
+
|
| 151 |
+
# Generate secure code
|
| 152 |
+
prompt = """### User:
|
| 153 |
+
Review this Python Flask authentication code for security vulnerabilities:
|
| 154 |
+
|
| 155 |
+
```python
|
| 156 |
+
@app.route('/login', methods=['POST'])
|
| 157 |
+
def login():
|
| 158 |
+
username = request.form['username']
|
| 159 |
+
password = request.form['password']
|
| 160 |
+
query = f"SELECT * FROM users WHERE username='{username}' AND password='{password}'"
|
| 161 |
+
user = db.execute(query).fetchone()
|
| 162 |
+
if user:
|
| 163 |
+
session['user_id'] = user['id']
|
| 164 |
+
return redirect('/dashboard')
|
| 165 |
+
return 'Invalid credentials'
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
### Assistant:
|
| 169 |
+
"""
|
| 170 |
+
|
| 171 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 172 |
+
outputs = model.generate(
|
| 173 |
+
**inputs,
|
| 174 |
+
max_new_tokens=2048,
|
| 175 |
+
temperature=0.7,
|
| 176 |
+
top_p=0.95,
|
| 177 |
+
do_sample=True
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 181 |
+
print(response)
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
### Run on Consumer Hardware (4-bit)
|
| 185 |
+
|
| 186 |
+
```python
|
| 187 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 188 |
+
from peft import PeftModel
|
| 189 |
+
|
| 190 |
+
# 4-bit quantization - runs on 16GB GPU
|
| 191 |
+
bnb_config = BitsAndBytesConfig(
|
| 192 |
+
load_in_4bit=True,
|
| 193 |
+
bnb_4bit_use_double_quant=True,
|
| 194 |
+
bnb_4bit_quant_type="nf4",
|
| 195 |
+
bnb_4bit_compute_dtype="bfloat16"
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 199 |
+
"Qwen/Qwen2.5-Coder-7B-Instruct",
|
| 200 |
+
quantization_config=bnb_config,
|
| 201 |
+
device_map="auto",
|
| 202 |
+
trust_remote_code=True
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
model = PeftModel.from_pretrained(base_model, "scthornton/qwen-coder-7b-securecode")
|
| 206 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-7B-Instruct", trust_remote_code=True)
|
| 207 |
+
|
| 208 |
+
# Now runs on RTX 3090/4080!
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
+
### Code Review Use Case
|
| 212 |
+
|
| 213 |
+
```python
|
| 214 |
+
# Security audit of entire file
|
| 215 |
+
code_to_review = open("app.py", "r").read()
|
| 216 |
+
|
| 217 |
+
prompt = f"""### User:
|
| 218 |
+
Perform a comprehensive security review of this application code. Identify all OWASP Top 10 vulnerabilities.
|
| 219 |
+
|
| 220 |
+
```python
|
| 221 |
+
{code_to_review}
|
| 222 |
+
```
|
| 223 |
+
|
| 224 |
+
### Assistant:
|
| 225 |
+
"""
|
| 226 |
+
|
| 227 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=32768).to(model.device)
|
| 228 |
+
outputs = model.generate(**inputs, max_new_tokens=4096, temperature=0.3) # Lower temp for precise analysis
|
| 229 |
+
review = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 230 |
+
print(review)
|
| 231 |
+
```
|
| 232 |
+
|
| 233 |
+
---
|
| 234 |
+
|
| 235 |
+
## π― Use Cases
|
| 236 |
+
|
| 237 |
+
### 1. **Automated Security Code Review**
|
| 238 |
+
Qwen's superior code understanding makes it ideal for reviewing complex codebases:
|
| 239 |
+
```
|
| 240 |
+
Analyze this 500-line authentication module for security vulnerabilities
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
### 2. **Multi-File Security Analysis**
|
| 244 |
+
With 128K context, analyze entire projects:
|
| 245 |
+
```
|
| 246 |
+
Review these 3 related files for security issues: auth.py, middleware.py, models.py
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
### 3. **Advanced Vulnerability Explanation**
|
| 250 |
+
Qwen excels at explaining complex attack chains:
|
| 251 |
+
```
|
| 252 |
+
Explain how an attacker could chain SSRF with authentication bypass in this microservices architecture
|
| 253 |
+
```
|
| 254 |
+
|
| 255 |
+
### 4. **Production Security Architecture**
|
| 256 |
+
Get architectural security guidance:
|
| 257 |
+
```
|
| 258 |
+
Design a secure authentication system for a distributed microservices platform handling 100K requests/second
|
| 259 |
+
```
|
| 260 |
+
|
| 261 |
+
### 5. **Multi-Language Security Refactoring**
|
| 262 |
+
Works across Qwen's 92 supported languages:
|
| 263 |
+
```
|
| 264 |
+
Refactor this Java Spring Boot controller to fix authentication vulnerabilities
|
| 265 |
+
```
|
| 266 |
+
|
| 267 |
+
---
|
| 268 |
+
|
| 269 |
+
## β οΈ Limitations
|
| 270 |
+
|
| 271 |
+
### What This Model Does Well
|
| 272 |
+
β
Exceptional code understanding and completion
|
| 273 |
+
β
Multi-language security analysis (92 languages)
|
| 274 |
+
β
Large context window for file/project analysis
|
| 275 |
+
β
Detailed vulnerability explanations with examples
|
| 276 |
+
β
Complex attack chain analysis
|
| 277 |
+
|
| 278 |
+
### What This Model Doesn't Do
|
| 279 |
+
β **Not a security scanner** - Use tools like Semgrep, CodeQL, or Snyk
|
| 280 |
+
β **Not a penetration testing tool** - Cannot perform active exploitation
|
| 281 |
+
β **Not legal/compliance advice** - Consult security professionals
|
| 282 |
+
β **Not a replacement for security experts** - Critical systems need professional review
|
| 283 |
+
|
| 284 |
+
### Known Issues
|
| 285 |
+
- May generate verbose responses (trained on detailed security explanations)
|
| 286 |
+
- Best for common vulnerability patterns (OWASP Top 10) vs novel 0-days
|
| 287 |
+
- Requires 16GB+ GPU for optimal performance (4-bit quantization)
|
| 288 |
+
|
| 289 |
+
---
|
| 290 |
+
|
| 291 |
+
## π Performance Benchmarks
|
| 292 |
+
|
| 293 |
+
### Hardware Requirements
|
| 294 |
+
|
| 295 |
+
**Minimum:**
|
| 296 |
+
- 16GB RAM
|
| 297 |
+
- 12GB GPU VRAM (with 4-bit quantization)
|
| 298 |
+
|
| 299 |
+
**Recommended:**
|
| 300 |
+
- 32GB RAM
|
| 301 |
+
- 16GB+ GPU (RTX 3090, A5000, etc.)
|
| 302 |
+
|
| 303 |
+
**Inference Speed (on RTX 3090 24GB):**
|
| 304 |
+
- ~40 tokens/second with 4-bit quantization
|
| 305 |
+
- ~60 tokens/second with bfloat16 (full precision)
|
| 306 |
+
|
| 307 |
+
### Code Generation Benchmarks (Base Qwen 2.5-Coder)
|
| 308 |
+
|
| 309 |
+
| Benchmark | Score | Rank |
|
| 310 |
+
|-----------|-------|------|
|
| 311 |
+
| HumanEval | 88.2% | #1 in 7B class |
|
| 312 |
+
| MBPP | 75.8% | #1 in 7B class |
|
| 313 |
+
| LiveCodeBench | 35.1% | Top 3 overall |
|
| 314 |
+
| MultiPL-E | 78.9% | Best multi-language |
|
| 315 |
+
|
| 316 |
+
**Security benchmarks coming soon** - community contributions welcome!
|
| 317 |
+
|
| 318 |
+
---
|
| 319 |
+
|
| 320 |
+
## π¬ Dataset Information
|
| 321 |
+
|
| 322 |
+
This model was trained on **[SecureCode v2.0](https://huggingface.co/datasets/scthornton/securecode-v2)**, a production-grade security dataset with:
|
| 323 |
+
|
| 324 |
+
- **1,209 total examples** (841 train / 175 validation / 193 test)
|
| 325 |
+
- **100% incident grounding** - every example tied to real CVEs or security breaches
|
| 326 |
+
- **11 vulnerability categories** - complete OWASP Top 10:2025 coverage
|
| 327 |
+
- **11 programming languages** - from Python to Rust
|
| 328 |
+
- **4-turn conversational structure** - mirrors real developer-AI workflows
|
| 329 |
+
- **100% expert validation** - reviewed by independent security professionals
|
| 330 |
+
|
| 331 |
+
See the [full dataset card](https://huggingface.co/datasets/scthornton/securecode-v2) for complete details.
|
| 332 |
+
|
| 333 |
+
---
|
| 334 |
+
|
| 335 |
+
## π’ About perfecXion.ai
|
| 336 |
+
|
| 337 |
+
[perfecXion.ai](https://perfecxion.ai) is dedicated to advancing AI security through research, datasets, and production-grade security tooling.
|
| 338 |
+
|
| 339 |
+
**Connect:**
|
| 340 |
+
- Website: [perfecxion.ai](https://perfecxion.ai)
|
| 341 |
+
- Research: [perfecxion.ai/research](https://perfecxion.ai/research)
|
| 342 |
+
- GitHub: [@scthornton](https://github.com/scthornton)
|
| 343 |
+
- HuggingFace: [@scthornton](https://huggingface.co/scthornton)
|
| 344 |
+
|
| 345 |
+
---
|
| 346 |
+
|
| 347 |
+
## π License
|
| 348 |
+
|
| 349 |
+
**Model License:** Apache 2.0 (commercial use permitted)
|
| 350 |
+
**Dataset License:** CC BY-NC-SA 4.0
|
| 351 |
+
|
| 352 |
+
---
|
| 353 |
+
|
| 354 |
+
## π Citation
|
| 355 |
+
|
| 356 |
+
```bibtex
|
| 357 |
+
@misc{thornton2025securecode-qwen7b,
|
| 358 |
+
title={Qwen 2.5-Coder 7B - SecureCode Edition},
|
| 359 |
+
author={Thornton, Scott},
|
| 360 |
+
year={2025},
|
| 361 |
+
publisher={perfecXion.ai},
|
| 362 |
+
url={https://huggingface.co/scthornton/qwen-coder-7b-securecode},
|
| 363 |
+
note={Fine-tuned on SecureCode v2.0}
|
| 364 |
+
}
|
| 365 |
+
```
|
| 366 |
+
|
| 367 |
+
---
|
| 368 |
+
|
| 369 |
+
## π Acknowledgments
|
| 370 |
+
|
| 371 |
+
- **Alibaba Cloud & Qwen Team** for the exceptional Qwen 2.5-Coder base model
|
| 372 |
+
- **OWASP Foundation** for maintaining the Top 10 vulnerability taxonomy
|
| 373 |
+
- **MITRE Corporation** for the CVE database
|
| 374 |
+
- **Hugging Face** for infrastructure
|
| 375 |
+
|
| 376 |
+
---
|
| 377 |
+
|
| 378 |
+
## π Related Models in SecureCode Collection
|
| 379 |
+
|
| 380 |
+
- **[llama-3.2-3b-securecode](https://huggingface.co/scthornton/llama-3.2-3b-securecode)** - Most accessible (3B)
|
| 381 |
+
- **[deepseek-coder-6.7b-securecode](https://huggingface.co/scthornton/deepseek-coder-6.7b-securecode)** - Security-optimized (6.7B)
|
| 382 |
+
- **[codellama-13b-securecode](https://huggingface.co/scthornton/codellama-13b-securecode)** - Established brand (13B)
|
| 383 |
+
- **[starcoder2-15b-securecode](https://huggingface.co/scthornton/starcoder2-15b-securecode)** - Multi-language specialist (15B)
|
| 384 |
+
|
| 385 |
+
View the complete collection: [SecureCode Models](https://huggingface.co/collections/scthornton/securecode)
|
| 386 |
+
|
| 387 |
+
---
|
| 388 |
+
|
| 389 |
+
<div align="center">
|
| 390 |
+
|
| 391 |
+
**Built with β€οΈ for secure software development**
|
| 392 |
+
|
| 393 |
+
[perfecXion.ai](https://perfecxion.ai) | [Research](https://perfecxion.ai/research) | [Contact](mailto:scott@perfecxion.ai)
|
| 394 |
+
|
| 395 |
+
</div>
|