ScrapeGoat-Music-Stage1 / train_local.py
Nathan9's picture
Upload 8 files
103c8f5 verified
#!/usr/bin/env python3
"""
Training script for ScrapeGoat Music models using local model files with HCF optimization.
Optimized for local training with the models in the provided directory structure.
"""
import os
import sys
import json
import torch
import logging
from pathlib import Path
from dataclasses import dataclass
from typing import Optional, List, Dict, Tuple, Any
import transformers
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from datasets import Dataset
import numpy as np
from accelerate import Accelerator
from safetensors import safe_open
from safetensors.torch import save_file, load_file
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Add xcodec_mini_infer to path to access its modules
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
XCODEC_PATH = os.path.join(SCRIPT_DIR, "xcodec_mini_infer")
sys.path.append(XCODEC_PATH)
# Import HCF training components from train_hcf.py
from train_hcf import (
TensorInfo,
SafeTensorHCFAnalyzer,
TrainingStatistics,
HCFTrainingOptimizer,
HCFAwareTrainer
)
@dataclass
class LocalModelConfig:
"""Configuration for local model directories"""
model_path: str
name: str
@property
def model_dir(self) -> str:
return os.path.abspath(self.model_path)
class LocalFineTuner:
"""Fine-tuner that works with local model files"""
def __init__(
self,
model_config: LocalModelConfig,
dataset_path: str,
output_dir: str,
device: str = "auto",
batch_size: int = 4,
gradient_accumulation_steps: int = 4,
learning_rate: float = 1e-5,
num_epochs: int = 3,
use_hcf: bool = True
):
self.model_config = model_config
self.dataset_path = Path(dataset_path)
self.output_dir = Path(output_dir)
self.device = self._setup_device(device)
self.use_hcf = use_hcf
# Ensure output directory exists
self.output_dir.mkdir(parents=True, exist_ok=True)
# Set up training arguments
self.training_args = TrainingArguments(
output_dir=str(self.output_dir),
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=learning_rate,
num_train_epochs=num_epochs,
logging_steps=100,
save_steps=1000,
evaluation_strategy="steps",
eval_steps=500,
save_total_limit=3,
load_best_model_at_end=True,
gradient_checkpointing=True,
fp16=torch.cuda.is_available(),
optim="adamw_torch"
)
def _setup_device(self, device: str) -> str:
"""Set up the training device"""
if device == "auto":
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
return device
def _load_model_and_tokenizer(self):
"""Load model and tokenizer from local path"""
logger.info(f"Loading model from {self.model_config.model_dir}")
# Determine dtype based on device
dtype = torch.bfloat16 if self.device == "cuda" else torch.float32
# Load model from local path
model = AutoModelForCausalLM.from_pretrained(
self.model_config.model_dir,
torch_dtype=dtype,
device_map="auto" if self.device == "cuda" else None,
attn_implementation="flash_attention_2" if self.device == "cuda" else "eager",
local_files_only=True
)
# Load tokenizer from local path
tokenizer = AutoTokenizer.from_pretrained(
self.model_config.model_dir,
local_files_only=True
)
return model, tokenizer
def _prepare_dataset(self, tokenizer):
"""Prepare dataset for training"""
logger.info("Preparing dataset")
# Load metadata
with open(self.dataset_path / "metadata" / "dataset_info.json") as f:
metadata = json.load(f)
# Define text generation from metadata
def generate_text(item):
return f"Genre: {item['genre']}\nDuration: {item['duration']:.2f}s\nTitle: {item['title']}\nArtist: {item['artist']}\n"
# Generate text samples
texts = [generate_text(item) for item in metadata["files"]]
dataset = Dataset.from_dict({"text": texts})
# Tokenize function
def tokenize(examples):
return tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=512,
return_tensors="pt"
)
# Apply tokenization
tokenized_dataset = dataset.map(
tokenize,
batched=True,
remove_columns=dataset.column_names
)
return tokenized_dataset
def train(self):
"""Train the model with HCF optimization"""
# Create output directory
self.output_dir.mkdir(parents=True, exist_ok=True)
# Log training configuration
logger.info(f"Training {self.model_config.name} model with HCF optimization")
logger.info(f"Model path: {self.model_config.model_dir}")
logger.info(f"Dataset path: {self.dataset_path}")
logger.info(f"Output directory: {self.output_dir}")
logger.info(f"Device: {self.device}")
logger.info(f"HCF optimization: {'enabled' if self.use_hcf else 'disabled'}")
# Load model and tokenizer
model, tokenizer = self._load_model_and_tokenizer()
# Prepare dataset
dataset = self._prepare_dataset(tokenizer)
# Split dataset
dataset = dataset.train_test_split(test_size=0.1)
if self.use_hcf:
logger.info("Using HCF-aware training")
# Create custom HCF optimizer
optimizer = HCFTrainingOptimizer(
model.parameters(),
lr=self.training_args.learning_rate,
weight_quantization=True,
maintain_patterns=True
)
# Create HCF trainer
hcf_trainer = HCFAwareTrainer(model, optimizer)
# Create custom training loop
train_loader = torch.utils.data.DataLoader(
dataset["train"],
batch_size=self.training_args.per_device_train_batch_size,
shuffle=True
)
# Training loop with HCF awareness
criterion = torch.nn.CrossEntropyLoss()
for epoch in range(int(self.training_args.num_train_epochs)):
stats = hcf_trainer.train_epoch(train_loader, criterion, epoch)
# Log training metrics
logger.info(f"Epoch {epoch} completed")
logger.info(f"Memory Savings: {stats.memory_savings/1024/1024:.2f}MB")
logger.info(f"Quantization Error: {stats.quantization_error:.6f}")
logger.info(f"Convergence Rate: {stats.convergence_rate:.4f}")
# Save checkpoint
self._save_hcf_checkpoint(model, tokenizer, epoch)
else:
# Use standard HuggingFace Trainer
logger.info("Using standard training")
trainer = Trainer(
model=model,
args=self.training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
# Train
logger.info("Starting training")
trainer.train()
# Save final model
logger.info("Saving model")
final_output_dir = self.output_dir / "final_model"
final_output_dir.mkdir(exist_ok=True)
model.save_pretrained(str(final_output_dir))
tokenizer.save_pretrained(str(final_output_dir))
logger.info(f"Training complete. Model saved to {final_output_dir}")
def _save_hcf_checkpoint(self, model, tokenizer, epoch):
"""Save checkpoint with HCF metadata"""
checkpoint_dir = self.output_dir / f"checkpoint-{epoch}"
checkpoint_dir.mkdir(exist_ok=True)
# Save model and tokenizer
model.save_pretrained(str(checkpoint_dir))
tokenizer.save_pretrained(str(checkpoint_dir))
# Analyze and save HCF metadata
analyzer = SafeTensorHCFAnalyzer()
# Save tensors to analyze
model_path = str(checkpoint_dir / "model.safetensors")
if os.path.exists(model_path):
results = analyzer.analyze_safetensor_weights(model_path)
# Save analysis results
with open(checkpoint_dir / "hcf_analysis.json", "w") as f:
json.dump(results, f, indent=2)
logger.info(f"Saved checkpoint at {checkpoint_dir}")
def main():
"""Main function for training"""
import argparse
parser = argparse.ArgumentParser(description="Retrain ScrapeGoat Music models with HCF optimization")
parser.add_argument("--model", type=str, choices=["7b", "1b"], required=True,
help="Model size to train")
parser.add_argument("--dataset_path", type=str, required=True,
help="Path to processed dataset")
parser.add_argument("--output_dir", type=str, required=True,
help="Directory to save trained model")
parser.add_argument("--device", type=str, default="auto",
help="Device to use (cuda, cpu, mps, or auto)")
parser.add_argument("--batch_size", type=int, default=4,
help="Batch size for training")
parser.add_argument("--gradient_accumulation_steps", type=int, default=4,
help="Gradient accumulation steps")
parser.add_argument("--learning_rate", type=float, default=1e-5,
help="Learning rate")
parser.add_argument("--num_epochs", type=int, default=3,
help="Number of training epochs")
parser.add_argument("--use_hcf", action="store_true", default=True,
help="Enable HCF optimization")
parser.add_argument("--base_dir", type=str, default=os.getcwd(),
help="Base directory containing model folders")
args = parser.parse_args()
# Set up model configuration based on size
if args.model == "7b":
model_path = os.path.join(args.base_dir, "scrapegoat/ScrapeGoat-Music-Stage1")
model_config = LocalModelConfig(
model_path=model_path,
name="ScrapeGoatMusic 7B"
)
else:
model_path = os.path.join(args.base_dir, "scrapegoat/ScrapeGoat-Music-Stage2")
model_config = LocalModelConfig(
model_path=model_path,
name="ScrapeGoatMusic 1B"
)
# Create fine-tuner
fine_tuner = LocalFineTuner(
model_config=model_config,
dataset_path=args.dataset_path,
output_dir=args.output_dir,
device=args.device,
batch_size=args.batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
learning_rate=args.learning_rate,
num_epochs=args.num_epochs,
use_hcf=args.use_hcf
)
# Train model
fine_tuner.train()
if __name__ == "__main__":
main()