|
--- |
|
license: cc-by-sa-4.0 |
|
language: |
|
- en |
|
tags: |
|
- contracts |
|
- legal |
|
- document ai |
|
--- |
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). |
|
|
|
## Model Details |
|
|
|
Instruction fine tuned Flan-T5 on Contracts |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This model is fine-tuned using Alpaca like instructions. The base data for instruction fine-tuning is a legal corpus with fields like Titles , agreement date, party name, and addresses. |
|
|
|
There are many type of models trained on above DataSet (DataSet will be released soon for the community) |
|
An encoder-decoder architecture like Flan-T5 is used because the author found it to be better than a decoder only architecture given the same number of parameters. |
|
|
|
|
|
- **Developed by:** [More Information Needed] |
|
- **Shared by [optional]:** [More Information Needed] |
|
- **Model type:** [More Information Needed] |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** [More Information Needed] |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [More Information Needed] |
|
- **Paper [optional]:** [More Information Needed] |
|
- **Demo [optional]:** [More Information Needed] |
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
Just like any ChatGPT equivalent model (For Contracts Domain) |
|
|
|
### Direct Use |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
### Downstream Use [optional] |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
|
|
### Out-of-Scope Use |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
### Recommendations |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
>>> model_name = "scholarly360/contracts-extraction-flan-t5-large" |
|
>>> model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
>>> ### Example 1 |
|
>>> prompt = """ what kind of clause is "Neither Party shall be liable to the other for any abatement of Charges, delay or non-performance of its obligations under the Services Agreement arising from any cause or causes beyond its reasonable control (a Force Majeure Event) including, without limitation """ |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
>>> outputs = model.generate(**inputs) |
|
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) |
|
>>> ### Example 2 |
|
>>> prompt = """ what is agreement date in 'This COLLABORATION AGREEMENT (Agreement) dated November 14, 2002, is made by and between ZZZ, INC., a Delaware corporation' """" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
>>> outputs = model.generate(**inputs) |
|
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) |
|
>>> ### Example 3 |
|
>>> prompt = """ ### Instruction: \n\n what is agreement date ### Input: \n\n This COLLABORATION AGREEMENT (Agreement) dated November 14, 2002, is made by and between ZZZ, INC., a Delaware corporation """" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
>>> outputs = model.generate(**inputs) |
|
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) |
|
``` |
|
|
|
|
|
[More Information Needed] |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
DataSet will be released soon for the community |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
#### Preprocessing [optional] |
|
|
|
[More Information Needed] |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
[More Information Needed] |
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Data Card if possible. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Factors |
|
|
|
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
[More Information Needed] |
|
|
|
### Results |
|
|
|
[More Information Needed] |
|
|
|
#### Summary |
|
|
|
|
|
|
|
## Model Examination [optional] |
|
|
|
<!-- Relevant interpretability work for the model goes here --> |
|
|
|
[More Information Needed] |
|
|
|
## Environmental Impact |
|
|
|
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** [More Information Needed] |
|
- **Hours used:** [More Information Needed] |
|
- **Cloud Provider:** [More Information Needed] |
|
- **Compute Region:** [More Information Needed] |
|
- **Carbon Emitted:** [More Information Needed] |
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
[More Information Needed] |
|
|
|
### Compute Infrastructure |
|
|
|
[More Information Needed] |
|
|
|
#### Hardware |
|
|
|
[More Information Needed] |
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
[More Information Needed] |
|
|
|
## More Information [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
https://github.com/scholarly360 |
|
|
|
|
|
|