Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
datasets:
|
4 |
- wikipedia
|
5 |
language:
|
@@ -15,15 +15,13 @@ Trained on English and Japanese Wikipedia data.
|
|
15 |
|
16 |
## How to use
|
17 |
|
18 |
-
```
|
19 |
-
import
|
20 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, set_seed
|
21 |
|
22 |
-
model = AutoModelForCausalLM.from_pretrained("sbintuitions/
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained("sbintuitions/
|
24 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
25 |
-
|
26 |
-
print(generator("Hello", max_length=30, do_sample=True, top_k=1000))
|
27 |
```
|
28 |
|
29 |
## Model architecture
|
@@ -33,4 +31,5 @@ A 4-layer, 512-hidden-size transformer-based language model.
|
|
33 |
The model was trained on English Wikipedia and Japanese Wikipedia to optimize a traditional language modelling objective for 25B tokens.
|
34 |
|
35 |
## License
|
36 |
-
[
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
datasets:
|
4 |
- wikipedia
|
5 |
language:
|
|
|
15 |
|
16 |
## How to use
|
17 |
|
18 |
+
```python
|
19 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
20 |
|
21 |
+
model = AutoModelForCausalLM.from_pretrained("sbintuitions/tiny-lm", torch_dtype="auto")
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("sbintuitions/tiny-lm")
|
23 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
24 |
+
print(generator("Hello", max_length=30, do_sample=True, top_k=100))
|
|
|
25 |
```
|
26 |
|
27 |
## Model architecture
|
|
|
31 |
The model was trained on English Wikipedia and Japanese Wikipedia to optimize a traditional language modelling objective for 25B tokens.
|
32 |
|
33 |
## License
|
34 |
+
[MIT License](https://huggingface.co/sbintuitions/tiny-lm/resolve/main/LICENSE)
|
35 |
+
|