|
--- |
|
tags: |
|
- CartPole-v1 |
|
- reinforce |
|
- reinforcement-learning |
|
- custom-implementation |
|
- deep-rl-class |
|
model-index: |
|
- name: Reinforce-CartPole-v1 |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: CartPole-v1 |
|
type: CartPole-v1 |
|
metrics: |
|
- type: mean_reward |
|
value: 109.92 +/- 16.87 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
# **Q-Learning** Agent playing **CartPole-v1** |
|
|
|
This is a trained model of a **Reinforce** agent playing **CartPole-v1** . |
|
|
|
## Usage |
|
|
|
```python |
|
|
|
model = load_from_hub(repo_id="sayby/Reinforce-CartPole-v1", filename="model.pt") |
|
|
|
# Don't forget to check if you need to add additional attributes (is_slippery=False etc) |
|
|
|
env = gym.make(model["env_id"]) |
|
|
|
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["eval_seed"]) |
|
|
|
|
|
``` |
|
|