|
""" |
|
Usage: |
|
|
|
python low_rank_lora.py --repo_id=glif/how2draw --filename="How2Draw-V2_000002800.safetensors" \ |
|
--new_rank=4 --new_lora_path="How2Draw-V2_000002800_rank_4.safetensors" |
|
""" |
|
|
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
import safetensors.torch |
|
import fire |
|
|
|
|
|
def sparse_random_projection_matrix(original_rank, new_rank, density=0.1): |
|
""" |
|
Generates a sparse random projection matrix. |
|
|
|
Args: |
|
original_rank (int): Original rank (number of rows). |
|
new_rank (int): Reduced rank (number of columns). |
|
density (float): Fraction of non-zero elements. |
|
|
|
Returns: |
|
R (torch.Tensor): Sparse random projection matrix. |
|
""" |
|
R = torch.zeros(new_rank, original_rank) |
|
num_nonzero = int(density * original_rank) |
|
for i in range(new_rank): |
|
indices = torch.randperm(original_rank)[:num_nonzero] |
|
values = torch.randn(num_nonzero) |
|
R[i, indices] = values |
|
return R / torch.sqrt(torch.tensor(new_rank, dtype=torch.float32)) |
|
|
|
|
|
def reduce_lora_rank_random_projection(lora_A, lora_B, new_rank=4, use_sparse=False): |
|
""" |
|
Reduces the rank of LoRA matrices lora_A and lora_B using random projections. |
|
|
|
Args: |
|
lora_A (torch.Tensor): Original lora_A matrix of shape [original_rank, in_features]. |
|
lora_B (torch.Tensor): Original lora_B matrix of shape [out_features, original_rank]. |
|
new_rank (int): Desired lower rank. |
|
use_sparse (bool): Use sparse projection matrix. |
|
|
|
Returns: |
|
lora_A_new (torch.Tensor): Reduced lora_A matrix of shape [new_rank, in_features]. |
|
lora_B_new (torch.Tensor): Reduced lora_B matrix of shape [out_features, new_rank]. |
|
""" |
|
original_rank = lora_A.shape[0] |
|
|
|
|
|
if use_sparse: |
|
R = sparse_random_projection_matrix(original_rank=original_rank, new_rank=new_rank) |
|
else: |
|
R = torch.randn(new_rank, original_rank, dtype=torch.float32) / torch.sqrt( |
|
torch.tensor(new_rank, dtype=torch.float32) |
|
) |
|
R = R.to(lora_A.device, lora_A.dtype) |
|
|
|
|
|
lora_A_new = (R @ lora_A.to(R.dtype)).to(lora_A.dtype) |
|
lora_B_new = (lora_B.to(R.dtype) @ R.T).to(lora_B.dtype) |
|
|
|
return lora_A_new, lora_B_new |
|
|
|
|
|
def reduce_lora_rank_state_dict_random_projection(state_dict, new_rank=4, use_sparse=False): |
|
""" |
|
Reduces the rank of all LoRA matrices in the given state dict using random projections. |
|
|
|
Args: |
|
state_dict (dict): The state dict containing LoRA matrices. |
|
new_rank (int): Desired lower rank. |
|
use_sparse (bool): Use sparse projection matrix. |
|
|
|
Returns: |
|
new_state_dict (dict): State dict with reduced-rank LoRA matrices. |
|
""" |
|
new_state_dict = state_dict.copy() |
|
keys = list(state_dict.keys()) |
|
for key in keys: |
|
if "lora_A.weight" in key: |
|
|
|
lora_A_key = key |
|
lora_B_key = key.replace("lora_A.weight", "lora_B.weight") |
|
if lora_B_key in state_dict: |
|
lora_A = state_dict[lora_A_key] |
|
lora_B = state_dict[lora_B_key] |
|
|
|
|
|
lora_A = lora_A.to("cuda") |
|
lora_B = lora_B.to("cuda") |
|
|
|
|
|
lora_A_new, lora_B_new = reduce_lora_rank_random_projection( |
|
lora_A, lora_B, new_rank=new_rank, use_sparse=use_sparse |
|
) |
|
|
|
|
|
new_state_dict[lora_A_key] = lora_A_new |
|
new_state_dict[lora_B_key] = lora_B_new |
|
|
|
print(f"Reduced rank of {lora_A_key} and {lora_B_key} to {new_rank}") |
|
|
|
return new_state_dict |
|
|
|
|
|
def compare_approximation_error(orig_state_dict, new_state_dict): |
|
for key in orig_state_dict: |
|
if "lora_A.weight" in key: |
|
lora_A_key = key |
|
lora_B_key = key.replace("lora_A.weight", "lora_B.weight") |
|
lora_A_old = orig_state_dict[lora_A_key] |
|
lora_B_old = orig_state_dict[lora_B_key] |
|
lora_A_new = new_state_dict[lora_A_key] |
|
lora_B_new = new_state_dict[lora_B_key] |
|
|
|
|
|
delta_W_old = (lora_B_old @ lora_A_old).to("cuda") |
|
|
|
|
|
delta_W_new = lora_B_new @ lora_A_new |
|
|
|
|
|
error = torch.norm(delta_W_old - delta_W_new, p="fro") / torch.norm(delta_W_old, p="fro") |
|
print(f"Relative error for {lora_A_key}: {error.item():.6f}") |
|
|
|
|
|
def main( |
|
repo_id: str, |
|
filename: str, |
|
new_rank: int, |
|
use_sparse: bool = False, |
|
check_error: bool = False, |
|
new_lora_path: str = None, |
|
): |
|
|
|
if new_lora_path is None: |
|
raise ValueError("Please provide a path to serialize the converted state dict.") |
|
|
|
ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename) |
|
original_state_dict = safetensors.torch.load_file(ckpt_path) |
|
new_state_dict = reduce_lora_rank_state_dict_random_projection( |
|
original_state_dict, new_rank=new_rank, use_sparse=use_sparse |
|
) |
|
|
|
if check_error: |
|
compare_approximation_error(original_state_dict, new_state_dict) |
|
|
|
new_state_dict = {k: v.to("cpu") for k, v in new_state_dict.items()} |
|
|
|
safetensors.torch.save(new_state_dict, new_lora_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(main) |
|
|