Upload folder using huggingface_hub
Browse files- .gitattributes +20 -0
- How2Draw-V2_000002800_rand_svd.safetensors +3 -0
- How2Draw-V2_000002800_reduced.safetensors +3 -0
- How2Draw-V2_000002800_reduced_sparse.safetensors +3 -0
- How2Draw-V2_000002800_svd.safetensors +3 -0
- images/How2Draw-V2_000002800_rand_svd_0.png +3 -0
- images/How2Draw-V2_000002800_rand_svd_1.png +0 -0
- images/How2Draw-V2_000002800_rand_svd_2.png +3 -0
- images/How2Draw-V2_000002800_rand_svd_3.png +0 -0
- images/How2Draw-V2_000002800_rand_svd_collage_0.png +3 -0
- images/How2Draw-V2_000002800_rand_svd_collage_1.png +3 -0
- images/How2Draw-V2_000002800_rand_svd_collage_2.png +3 -0
- images/How2Draw-V2_000002800_rand_svd_collage_3.png +3 -0
- images/How2Draw-V2_000002800_svd_0.png +3 -0
- images/How2Draw-V2_000002800_svd_1.png +0 -0
- images/How2Draw-V2_000002800_svd_2.png +3 -0
- images/How2Draw-V2_000002800_svd_3.png +0 -0
- images/How2Draw-V2_000002800_svd_collage_0.png +3 -0
- images/How2Draw-V2_000002800_svd_collage_1.png +3 -0
- images/How2Draw-V2_000002800_svd_collage_2.png +3 -0
- images/How2Draw-V2_000002800_svd_collage_3.png +3 -0
- images/collage_0.png +3 -0
- images/collage_1.png +3 -0
- images/collage_2.png +3 -0
- images/collage_3.png +3 -0
- images/original_0.png +3 -0
- images/original_1.png +0 -0
- images/original_2.png +3 -0
- images/original_3.png +0 -0
- images/reduced_0.png +3 -0
- images/reduced_1.png +0 -0
- images/reduced_2.png +3 -0
- images/reduced_3.png +0 -0
- images/reduced_sparse_0.png +0 -0
- images/reduced_sparse_1.png +0 -0
- images/reduced_sparse_2.png +0 -0
- images/reduced_sparse_3.png +0 -0
- low_rank_lora.py +156 -0
- svd_low_rank_lora.py +178 -0
.gitattributes
CHANGED
@@ -33,3 +33,23 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
images/How2Draw-V2_000002800_rand_svd_0.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
images/How2Draw-V2_000002800_rand_svd_2.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
images/How2Draw-V2_000002800_rand_svd_collage_0.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
images/How2Draw-V2_000002800_rand_svd_collage_1.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
images/How2Draw-V2_000002800_rand_svd_collage_2.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
images/How2Draw-V2_000002800_rand_svd_collage_3.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
images/How2Draw-V2_000002800_svd_0.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
images/How2Draw-V2_000002800_svd_2.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
images/How2Draw-V2_000002800_svd_collage_0.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
images/How2Draw-V2_000002800_svd_collage_1.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
images/How2Draw-V2_000002800_svd_collage_2.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
images/How2Draw-V2_000002800_svd_collage_3.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
images/collage_0.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
images/collage_1.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
images/collage_2.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
images/collage_3.png filter=lfs diff=lfs merge=lfs -text
|
52 |
+
images/original_0.png filter=lfs diff=lfs merge=lfs -text
|
53 |
+
images/original_2.png filter=lfs diff=lfs merge=lfs -text
|
54 |
+
images/reduced_0.png filter=lfs diff=lfs merge=lfs -text
|
55 |
+
images/reduced_2.png filter=lfs diff=lfs merge=lfs -text
|
How2Draw-V2_000002800_rand_svd.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5931bbc8fd3c854596c5f56660649de6a2e9a220cc10cf67f1d4d0c58b6dbd5
|
3 |
+
size 43090208
|
How2Draw-V2_000002800_reduced.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:143d9e2b2b288a25086d034f8f750831dcd4e80c0a2814107bd36d3c80c8f999
|
3 |
+
size 43090208
|
How2Draw-V2_000002800_reduced_sparse.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2081b728f126065155dd11b4d60384967fe839c8a35088f781742258399ee416
|
3 |
+
size 43090208
|
How2Draw-V2_000002800_svd.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f4397c7fba89f7805a7ba30b99034538da4a4369292b64d9e72a3bc3cdb8f3f
|
3 |
+
size 43090208
|
images/How2Draw-V2_000002800_rand_svd_0.png
ADDED
Git LFS Details
|
images/How2Draw-V2_000002800_rand_svd_1.png
ADDED
images/How2Draw-V2_000002800_rand_svd_2.png
ADDED
Git LFS Details
|
images/How2Draw-V2_000002800_rand_svd_3.png
ADDED
images/How2Draw-V2_000002800_rand_svd_collage_0.png
ADDED
Git LFS Details
|
images/How2Draw-V2_000002800_rand_svd_collage_1.png
ADDED
Git LFS Details
|
images/How2Draw-V2_000002800_rand_svd_collage_2.png
ADDED
Git LFS Details
|
images/How2Draw-V2_000002800_rand_svd_collage_3.png
ADDED
Git LFS Details
|
images/How2Draw-V2_000002800_svd_0.png
ADDED
Git LFS Details
|
images/How2Draw-V2_000002800_svd_1.png
ADDED
images/How2Draw-V2_000002800_svd_2.png
ADDED
Git LFS Details
|
images/How2Draw-V2_000002800_svd_3.png
ADDED
images/How2Draw-V2_000002800_svd_collage_0.png
ADDED
Git LFS Details
|
images/How2Draw-V2_000002800_svd_collage_1.png
ADDED
Git LFS Details
|
images/How2Draw-V2_000002800_svd_collage_2.png
ADDED
Git LFS Details
|
images/How2Draw-V2_000002800_svd_collage_3.png
ADDED
Git LFS Details
|
images/collage_0.png
ADDED
Git LFS Details
|
images/collage_1.png
ADDED
Git LFS Details
|
images/collage_2.png
ADDED
Git LFS Details
|
images/collage_3.png
ADDED
Git LFS Details
|
images/original_0.png
ADDED
Git LFS Details
|
images/original_1.png
ADDED
images/original_2.png
ADDED
Git LFS Details
|
images/original_3.png
ADDED
images/reduced_0.png
ADDED
Git LFS Details
|
images/reduced_1.png
ADDED
images/reduced_2.png
ADDED
Git LFS Details
|
images/reduced_3.png
ADDED
images/reduced_sparse_0.png
ADDED
images/reduced_sparse_1.png
ADDED
images/reduced_sparse_2.png
ADDED
images/reduced_sparse_3.png
ADDED
low_rank_lora.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
|
4 |
+
python low_rank_lora.py --repo_id=glif/how2draw --filename="How2Draw-V2_000002800.safetensors" \
|
5 |
+
--new_rank=4 --new_lora_path="How2Draw-V2_000002800_rank_4.safetensors"
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
import safetensors.torch
|
11 |
+
import fire
|
12 |
+
|
13 |
+
|
14 |
+
def sparse_random_projection_matrix(original_rank, new_rank, density=0.1):
|
15 |
+
"""
|
16 |
+
Generates a sparse random projection matrix.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
original_rank (int): Original rank (number of rows).
|
20 |
+
new_rank (int): Reduced rank (number of columns).
|
21 |
+
density (float): Fraction of non-zero elements.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
R (torch.Tensor): Sparse random projection matrix.
|
25 |
+
"""
|
26 |
+
R = torch.zeros(new_rank, original_rank)
|
27 |
+
num_nonzero = int(density * original_rank)
|
28 |
+
for i in range(new_rank):
|
29 |
+
indices = torch.randperm(original_rank)[:num_nonzero]
|
30 |
+
values = torch.randn(num_nonzero)
|
31 |
+
R[i, indices] = values
|
32 |
+
return R / torch.sqrt(torch.tensor(new_rank, dtype=torch.float32))
|
33 |
+
|
34 |
+
|
35 |
+
def reduce_lora_rank_random_projection(lora_A, lora_B, new_rank=4, use_sparse=False):
|
36 |
+
"""
|
37 |
+
Reduces the rank of LoRA matrices lora_A and lora_B using random projections.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
lora_A (torch.Tensor): Original lora_A matrix of shape [original_rank, in_features].
|
41 |
+
lora_B (torch.Tensor): Original lora_B matrix of shape [out_features, original_rank].
|
42 |
+
new_rank (int): Desired lower rank.
|
43 |
+
use_sparse (bool): Use sparse projection matrix.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
lora_A_new (torch.Tensor): Reduced lora_A matrix of shape [new_rank, in_features].
|
47 |
+
lora_B_new (torch.Tensor): Reduced lora_B matrix of shape [out_features, new_rank].
|
48 |
+
"""
|
49 |
+
original_rank = lora_A.shape[0] # Assuming lora_A.shape = [original_rank, in_features]
|
50 |
+
|
51 |
+
# Generate random projection matrix
|
52 |
+
if use_sparse:
|
53 |
+
R = sparse_random_projection_matrix(original_rank=original_rank, new_rank=new_rank)
|
54 |
+
else:
|
55 |
+
R = torch.randn(new_rank, original_rank, dtype=torch.float32) / torch.sqrt(
|
56 |
+
torch.tensor(new_rank, dtype=torch.float32)
|
57 |
+
)
|
58 |
+
R = R.to(lora_A.device, lora_A.dtype)
|
59 |
+
|
60 |
+
# Project lora_A and lora_B
|
61 |
+
lora_A_new = (R @ lora_A.to(R.dtype)).to(lora_A.dtype) # Shape: [new_rank, in_features]
|
62 |
+
lora_B_new = (lora_B.to(R.dtype) @ R.T).to(lora_B.dtype) # Shape: [out_features, new_rank]
|
63 |
+
|
64 |
+
return lora_A_new, lora_B_new
|
65 |
+
|
66 |
+
|
67 |
+
def reduce_lora_rank_state_dict_random_projection(state_dict, new_rank=4, use_sparse=False):
|
68 |
+
"""
|
69 |
+
Reduces the rank of all LoRA matrices in the given state dict using random projections.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
state_dict (dict): The state dict containing LoRA matrices.
|
73 |
+
new_rank (int): Desired lower rank.
|
74 |
+
use_sparse (bool): Use sparse projection matrix.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
new_state_dict (dict): State dict with reduced-rank LoRA matrices.
|
78 |
+
"""
|
79 |
+
new_state_dict = state_dict.copy()
|
80 |
+
keys = list(state_dict.keys())
|
81 |
+
for key in keys:
|
82 |
+
if "lora_A.weight" in key:
|
83 |
+
# Find the corresponding lora_B
|
84 |
+
lora_A_key = key
|
85 |
+
lora_B_key = key.replace("lora_A.weight", "lora_B.weight")
|
86 |
+
if lora_B_key in state_dict:
|
87 |
+
lora_A = state_dict[lora_A_key]
|
88 |
+
lora_B = state_dict[lora_B_key]
|
89 |
+
|
90 |
+
# Ensure tensors are on CPU for random projection
|
91 |
+
lora_A = lora_A.to("cuda")
|
92 |
+
lora_B = lora_B.to("cuda")
|
93 |
+
|
94 |
+
# Apply the rank reduction using random projection
|
95 |
+
lora_A_new, lora_B_new = reduce_lora_rank_random_projection(
|
96 |
+
lora_A, lora_B, new_rank=new_rank, use_sparse=use_sparse
|
97 |
+
)
|
98 |
+
|
99 |
+
# Update the state dict
|
100 |
+
new_state_dict[lora_A_key] = lora_A_new
|
101 |
+
new_state_dict[lora_B_key] = lora_B_new
|
102 |
+
|
103 |
+
print(f"Reduced rank of {lora_A_key} and {lora_B_key} to {new_rank}")
|
104 |
+
|
105 |
+
return new_state_dict
|
106 |
+
|
107 |
+
|
108 |
+
def compare_approximation_error(orig_state_dict, new_state_dict):
|
109 |
+
for key in orig_state_dict:
|
110 |
+
if "lora_A.weight" in key:
|
111 |
+
lora_A_key = key
|
112 |
+
lora_B_key = key.replace("lora_A.weight", "lora_B.weight")
|
113 |
+
lora_A_old = orig_state_dict[lora_A_key]
|
114 |
+
lora_B_old = orig_state_dict[lora_B_key]
|
115 |
+
lora_A_new = new_state_dict[lora_A_key]
|
116 |
+
lora_B_new = new_state_dict[lora_B_key]
|
117 |
+
|
118 |
+
# Original delta_W
|
119 |
+
delta_W_old = (lora_B_old @ lora_A_old).to("cuda")
|
120 |
+
|
121 |
+
# Approximated delta_W
|
122 |
+
delta_W_new = lora_B_new @ lora_A_new
|
123 |
+
|
124 |
+
# Compute the approximation error
|
125 |
+
error = torch.norm(delta_W_old - delta_W_new, p="fro") / torch.norm(delta_W_old, p="fro")
|
126 |
+
print(f"Relative error for {lora_A_key}: {error.item():.6f}")
|
127 |
+
|
128 |
+
|
129 |
+
def main(
|
130 |
+
repo_id: str,
|
131 |
+
filename: str,
|
132 |
+
new_rank: int,
|
133 |
+
use_sparse: bool = False,
|
134 |
+
check_error: bool = False,
|
135 |
+
new_lora_path: str = None,
|
136 |
+
):
|
137 |
+
# ckpt_path = hf_hub_download(repo_id="glif/how2draw", filename="How2Draw-V2_000002800.safetensors")
|
138 |
+
if new_lora_path is None:
|
139 |
+
raise ValueError("Please provide a path to serialize the converted state dict.")
|
140 |
+
|
141 |
+
ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
142 |
+
original_state_dict = safetensors.torch.load_file(ckpt_path)
|
143 |
+
new_state_dict = reduce_lora_rank_state_dict_random_projection(
|
144 |
+
original_state_dict, new_rank=new_rank, use_sparse=use_sparse
|
145 |
+
)
|
146 |
+
|
147 |
+
if check_error:
|
148 |
+
compare_approximation_error(original_state_dict, new_state_dict)
|
149 |
+
|
150 |
+
new_state_dict = {k: v.to("cpu") for k, v in new_state_dict.items()}
|
151 |
+
# safetensors.torch.save_file(new_state_dict, "How2Draw-V2_000002800_reduced_sparse.safetensors")
|
152 |
+
safetensors.torch.save(new_state_dict, new_lora_path)
|
153 |
+
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
fire.Fire(main)
|
svd_low_rank_lora.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
|
4 |
+
Regular SVD:
|
5 |
+
python svd_low_rank_lora.py --repo_id=glif/how2draw --filename="How2Draw-V2_000002800.safetensors" \
|
6 |
+
--new_rank=4 --new_lora_path="How2Draw-V2_000002800_svd.safetensors"
|
7 |
+
|
8 |
+
Randomized SVD:
|
9 |
+
python svd_low_rank_lora.py --repo_id=glif/how2draw --filename="How2Draw-V2_000002800.safetensors" \
|
10 |
+
--new_rank=4 --niter=5 --new_lora_path="How2Draw-V2_000002800_svd.safetensors"
|
11 |
+
"""
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from huggingface_hub import hf_hub_download
|
15 |
+
import safetensors.torch
|
16 |
+
import fire
|
17 |
+
|
18 |
+
|
19 |
+
def randomized_svd(matrix, rank, niter=5):
|
20 |
+
"""
|
21 |
+
Performs a randomized SVD on the given matrix.
|
22 |
+
Args:
|
23 |
+
matrix (torch.Tensor): The input matrix.
|
24 |
+
rank (int): The target rank.
|
25 |
+
niter (int): Number of iterations for power method.
|
26 |
+
Returns:
|
27 |
+
U (torch.Tensor), S (torch.Tensor), Vh (torch.Tensor)
|
28 |
+
"""
|
29 |
+
# Step 1: Generate a random Gaussian matrix
|
30 |
+
omega = torch.randn(matrix.size(1), rank, device=matrix.device)
|
31 |
+
|
32 |
+
# Step 2: Form Y = A * Omega
|
33 |
+
Y = matrix @ omega
|
34 |
+
|
35 |
+
# Step 3: Orthonormalize Y using QR decomposition
|
36 |
+
Q, _ = torch.linalg.qr(Y, mode="reduced")
|
37 |
+
|
38 |
+
# Power iteration (optional, improves approximation)
|
39 |
+
for _ in range(niter):
|
40 |
+
Z = matrix.T @ Q
|
41 |
+
Q, _ = torch.linalg.qr(matrix @ Z, mode="reduced")
|
42 |
+
|
43 |
+
# Step 4: Compute B = Q^T * A
|
44 |
+
B = Q.T @ matrix
|
45 |
+
|
46 |
+
# Step 5: Compute SVD of the small matrix B
|
47 |
+
Ub, S, Vh = torch.linalg.svd(B, full_matrices=False)
|
48 |
+
|
49 |
+
# Step 6: Compute U = Q * Ub
|
50 |
+
U = Q @ Ub
|
51 |
+
|
52 |
+
return U[:, :rank], S[:rank], Vh[:rank, :]
|
53 |
+
|
54 |
+
|
55 |
+
def reduce_lora_rank(lora_A, lora_B, niter, new_rank=4):
|
56 |
+
"""
|
57 |
+
Reduces the rank of LoRA matrices lora_A and lora_B with SVD, supporting truncated SVD, too.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
lora_A (torch.Tensor): Original lora_A matrix of shape [original_rank, in_features].
|
61 |
+
lora_B (torch.Tensor): Original lora_B matrix of shape [out_features, original_rank].
|
62 |
+
niter (int): Number of power iterations for randomized SVD.
|
63 |
+
new_rank (int): Desired lower rank.
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
lora_A_new (torch.Tensor): Reduced lora_A matrix of shape [new_rank, in_features].
|
67 |
+
lora_B_new (torch.Tensor): Reduced lora_B matrix of shape [out_features, new_rank].
|
68 |
+
"""
|
69 |
+
# Compute the low-rank update matrix
|
70 |
+
dtype = lora_A.dtype
|
71 |
+
lora_A = lora_A.to("cuda", torch.float32)
|
72 |
+
lora_B = lora_B.to("cuda", torch.float32)
|
73 |
+
delta_W = lora_B @ lora_A
|
74 |
+
|
75 |
+
# Perform SVD on the update matrix
|
76 |
+
if niter is None:
|
77 |
+
U, S, Vh = torch.linalg.svd(delta_W, full_matrices=False)
|
78 |
+
# Perform randomized SVD
|
79 |
+
if niter:
|
80 |
+
U, S, Vh = randomized_svd(delta_W, rank=new_rank, niter=niter)
|
81 |
+
|
82 |
+
# Keep only the top 'new_rank' singular values and vectors
|
83 |
+
U_new = U[:, :new_rank]
|
84 |
+
S_new = S[:new_rank]
|
85 |
+
Vh_new = Vh[:new_rank, :]
|
86 |
+
|
87 |
+
# Compute the square roots of the singular values
|
88 |
+
S_sqrt = torch.sqrt(S_new)
|
89 |
+
|
90 |
+
# Compute the new lora_B and lora_A matrices
|
91 |
+
lora_B_new = U_new * S_sqrt.unsqueeze(0) # Shape: [out_features, new_rank]
|
92 |
+
lora_A_new = S_sqrt.unsqueeze(1) * Vh_new # Shape: [new_rank, in_features]
|
93 |
+
|
94 |
+
return lora_A_new.to(dtype), lora_B_new.to(dtype)
|
95 |
+
|
96 |
+
|
97 |
+
def reduce_lora_rank_state_dict(state_dict, niter, new_rank=4):
|
98 |
+
"""
|
99 |
+
Reduces the rank of all LoRA matrices in the given state dict.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
state_dict (dict): The state dict containing LoRA matrices.
|
103 |
+
niter (int): Number of power iterations for ranodmized SVD.
|
104 |
+
new_rank (int): Desired lower rank.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
new_state_dict (dict): State dict with reduced-rank LoRA matrices.
|
108 |
+
"""
|
109 |
+
new_state_dict = state_dict.copy()
|
110 |
+
keys = list(state_dict.keys())
|
111 |
+
for key in keys:
|
112 |
+
if "lora_A.weight" in key:
|
113 |
+
# Find the corresponding lora_B
|
114 |
+
lora_A_key = key
|
115 |
+
lora_B_key = key.replace("lora_A.weight", "lora_B.weight")
|
116 |
+
if lora_B_key in state_dict:
|
117 |
+
lora_A = state_dict[lora_A_key]
|
118 |
+
lora_B = state_dict[lora_B_key]
|
119 |
+
|
120 |
+
# Apply the rank reduction
|
121 |
+
lora_A_new, lora_B_new = reduce_lora_rank(lora_A, lora_B, niter=niter, new_rank=new_rank)
|
122 |
+
|
123 |
+
# Update the state dict
|
124 |
+
new_state_dict[lora_A_key] = lora_A_new
|
125 |
+
new_state_dict[lora_B_key] = lora_B_new
|
126 |
+
|
127 |
+
print(f"Reduced rank of {lora_A_key} and {lora_B_key} to {new_rank}")
|
128 |
+
|
129 |
+
return new_state_dict
|
130 |
+
|
131 |
+
|
132 |
+
def compare_approximation_error(orig_state_dict, new_state_dict):
|
133 |
+
for key in orig_state_dict:
|
134 |
+
if "lora_A.weight" in key:
|
135 |
+
lora_A_key = key
|
136 |
+
lora_B_key = key.replace("lora_A.weight", "lora_B.weight")
|
137 |
+
lora_A_old = orig_state_dict[lora_A_key]
|
138 |
+
lora_B_old = orig_state_dict[lora_B_key]
|
139 |
+
lora_A_new = new_state_dict[lora_A_key]
|
140 |
+
lora_B_new = new_state_dict[lora_B_key]
|
141 |
+
|
142 |
+
# Original delta_W
|
143 |
+
delta_W_old = (lora_B_old @ lora_A_old).to("cuda")
|
144 |
+
|
145 |
+
# Approximated delta_W
|
146 |
+
delta_W_new = lora_B_new @ lora_A_new
|
147 |
+
|
148 |
+
# Compute the approximation error
|
149 |
+
error = torch.norm(delta_W_old - delta_W_new, p="fro") / torch.norm(delta_W_old, p="fro")
|
150 |
+
print(f"Relative error for {lora_A_key}: {error.item():.6f}")
|
151 |
+
|
152 |
+
|
153 |
+
def main(
|
154 |
+
repo_id: str,
|
155 |
+
filename: str,
|
156 |
+
new_rank: int,
|
157 |
+
niter: int = None,
|
158 |
+
check_error: bool = False,
|
159 |
+
new_lora_path: str = None,
|
160 |
+
):
|
161 |
+
# ckpt_path = hf_hub_download(repo_id="glif/how2draw", filename="How2Draw-V2_000002800.safetensors")
|
162 |
+
if new_lora_path is None:
|
163 |
+
raise ValueError("Please provide a path to serialize the converted state dict.")
|
164 |
+
|
165 |
+
ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
166 |
+
original_state_dict = safetensors.torch.load_file(ckpt_path)
|
167 |
+
new_state_dict = reduce_lora_rank_state_dict(original_state_dict, niter=niter, new_rank=new_rank)
|
168 |
+
|
169 |
+
if check_error:
|
170 |
+
compare_approximation_error(original_state_dict, new_state_dict)
|
171 |
+
|
172 |
+
new_state_dict = {k: v.to("cpu").contiguous() for k, v in new_state_dict.items()}
|
173 |
+
# safetensors.torch.save_file(new_state_dict, "How2Draw-V2_000002800_reduced_sparse.safetensors")
|
174 |
+
safetensors.torch.save_file(new_state_dict, new_lora_path)
|
175 |
+
|
176 |
+
|
177 |
+
if __name__ == "__main__":
|
178 |
+
fire.Fire(main)
|