whisper-small-spa / README.md
saul1917's picture
End of training
4e33981 verified
|
raw
history blame
2.29 kB
---
language:
- spa
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- CIEMPIESS
metrics:
- wer
model-index:
- name: Whisper Small Spanish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CIEMPIESS
type: CIEMPIESS
args: 'config: spa, split: test'
metrics:
- name: Wer
type: wer
value: 0.38445504655148455
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Spanish
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the CIEMPIESS dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0152
- Wer: 0.3845
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.2277 | 0.4484 | 100 | 0.2420 | 9.5187 |
| 0.2788 | 0.8969 | 200 | 0.1965 | 7.9300 |
| 0.1799 | 1.3453 | 300 | 0.1541 | 6.9804 |
| 0.158 | 1.7937 | 400 | 0.1121 | 5.4762 |
| 0.0926 | 2.2422 | 500 | 0.0810 | 4.1792 |
| 0.0912 | 2.6906 | 600 | 0.0584 | 3.7438 |
| 0.0451 | 3.1390 | 700 | 0.0364 | 2.4318 |
| 0.0416 | 3.5874 | 800 | 0.0261 | 1.3271 |
| 0.0312 | 4.0359 | 900 | 0.0178 | 0.4736 |
| 0.015 | 4.4843 | 1000 | 0.0152 | 0.3845 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1