metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-cased-ft-conll-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9130718954248366
- name: Recall
type: recall
value: 0.9404240996297543
- name: F1
type: f1
value: 0.9265461780799203
- name: Accuracy
type: accuracy
value: 0.9846794607641137
bert-base-cased-ft-conll-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0576
- Precision: 0.9131
- Recall: 0.9404
- F1: 0.9265
- Accuracy: 0.9847
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2855 | 1.0 | 220 | 0.0768 | 0.8557 | 0.9100 | 0.8820 | 0.9783 |
0.0655 | 2.0 | 440 | 0.0633 | 0.9026 | 0.9327 | 0.9174 | 0.9825 |
0.0437 | 3.0 | 660 | 0.0576 | 0.9131 | 0.9404 | 0.9265 | 0.9847 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1