metadata
language:
- th
pipeline_tag: summarization
tags:
- summarization
- pegasus_x
widget:
- text: >-
หลังจากมีการทดสอบนับหลายร้อยครั้งเพื่อตรวจสอบการปรากฏตัวของเขม่าดำหรือมลพิษอื่นๆ
ตามแนวเทือกเขาแอนดีส ที่ตั้งขนานทอดยาวประมาณ 7,000
กิโลเมตรไปตามแนวชายฝั่งตะวันตกของละตินอเมริกา ล่าสุด
ผู้เชี่ยวชาญด้านสิ่งแวดล้อมจากมหาวิทยาลัยซานติอาโก ในประเทศชิลี เผยว่า
หิมะที่ปกคลุมเทือกเขาแอนดีสน่าจะมีความสะอาดพอๆกันกับหิมะในแถบอาร์กติกของประเทศแคนาดา,การวิจัยดังกล่าวเป็นส่วนหนึ่งของโครงการตรวจสอบการปรากฏตัวของเขม่าคาร์บอนสีดำหรือเขม่าดำ
(black carbon) ในดินแดนที่เรียกว่า หิมะภาค (cryosphere)
ซึ่งเป็นพื้นที่ส่วนหนึ่งของโลกที่มีทั้งหิมะและน้ำแข็งอยู่ใต้ผิวโลกและบนผิวโลก
พื้นที่เย็นยะเยือกที่เต็มไปด้วยหิมะของเทือกเขาแอนดีสก็จัดว่าเป็นหิมะภาคแห่งหนึ่ง
นักวิจัยพบว่าที่แห่งนี้มีเขม่าดำในปริมาณต่ำกว่า 14 นาโนกรัมต่อหิมะ 1 กรัม
บ่งชี้ว่าอัตราส่วนเปรียบเทียบค่าการสะท้อนแสงของพื้นผิวกับปริมาณรังสีทั้งหมดที่ตกกระทบของหิมะมีน้อยกว่า
2%
เปรียบเทียบแล้วก็นับว่าอยู่ในระดับเดียวกับหิมะในแถบรัฐอลาสกาของสหรัฐอเมริกา
หรือพื้นที่อาร์กติกในแคนาดา,ทั้งนี้
เขม่าดำนั้นถูกปล่อยออกมาจากการเผาไหม้ของน้ำมัน ดีเซล เชื้อเพลิงจากไม้
และเชื้อเพลิงจากซากดึกดำบรรพ์หรือฟอสซิล (fossil)
เป็นตัวที่ทำให้พื้นผิวหิมะหม่นดำและความสามารถในการสะท้อนแสงของพื้นผิวลดต่ำลง
นั่นหมายความว่าหิมะจะละลายเร็วขึ้น
ซึ่งการศึกษาความเข้มข้นของเขม่าดำอาจมีความสำคัญต่อการคาดการณ์อัตราการละลายของหิมะและน้ำแข็งในอนาคตได้.
example_title: Test
This repository features a fine-tuned Pegasus X model designed for summarizing Thai text. The architecture of the model is based on the Pegasus X model.
Library
pip install transformers
Example
from transformers import PegasusXForConditionalGeneration, AutoTokenizer
model = PegasusXForConditionalGeneration.from_pretrained("satjawat/pegasus-x-thai-sum")
tokenizer = AutoTokenizer.from_pretrained("satjawat/pegasus-x-thai-sum")
new_input_string = "ข้อความ"
new_input_ids = tokenizer(new_input_string.lower(), return_tensors="pt").input_ids
summary_ids = model.generate(new_input_ids, max_length=50, num_beams=6, length_penalty=2.0, early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print("Input:", new_input_string)
print("Generated Summary:", summary)
Training hyperparameters
The following hyperparameters were used during training:
- accumulation_steps: 2
- num_epochs: 20
- num_beams: 6
- learning_rate: lr=5e-5
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
- activation_function: gelu
- add_bias_logits: True
- normalize_embedding: True
- add_final_layer_norm: False
- normalize_before: False
Score
Evaluate the model with the test dataset of ThaiSum, consisting of a total of 11,000 articles, with the following scores:
- Rouge1: 0.490279
- Rouge2: 0.289839
- Rougel: 0.489334
Resource Funding
NSTDA Supercomputer center (ThaiSC) and the National e-Science Infrastructure Consortium for their support of computer facilities.
Citation
If you use "satjawat/pegasus-x-thai-sum" in your project or publication, please cite the model as follows:
ปรีชานนท์ ชาติไทย และ สัจจวัจน์ ส่งเสริม. (2567),
การสรุปข้อความข่าวภาษาไทยด้วยโครงข่ายประสาทเทียม (Thai News Text Summarization Using Neural Network),
วิทยาศาสตรบัณฑิต (วทบ.):ขอนแก่น, มหาวิทยาลัยขอนแก่น