sartajbhuvaji commited on
Commit
95e3918
·
verified ·
1 Parent(s): 77c7d94

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - allenai/dolma
5
+ language:
6
+ - en
7
+ base_model: allenai/OLMo-1B-0724-hf
8
+ library_name: transformers
9
+ pipeline_tag: text-generation
10
+ tags:
11
+ - art
12
+ - literature
13
+ - OLMo
14
+ - allenai
15
+ ---
16
+ ## Model Overview
17
+
18
+ `OLMo-1B-Base-Shakespeare` is a fine-tuned version of the `allenai/OLMo-1B-0724-hf` model, retrained on the complete collection of novels by William Shakespeare. The model aims to generate text in the style of Shakespeare's works and has been optimized to capture the linguistic and stylistic nuances present in the original text.
19
+
20
+ ## Model Details
21
+ - **Model Type:** Base Mode;
22
+ - **Base Model:** [allenai/OLMo-1B-0724-hf](https://huggingface.co/allenai/OLMo-1B-0724-hf)
23
+ - **Training Dataset:** [Works by William Shakespeare](https://gist.githubusercontent.com/blakesanie/dde3a2b7e698f52f389532b4b52bc254/raw/76fe1b5e9efcf0d2afdfd78b0bfaa737ad0a67d3/shakespeare.txt)
24
+ - **GPU VRAM Requirements:** 25 GB
25
+
26
+ - **Intended Use Cases:**
27
+ - Creative writing assistance
28
+ - Educational purposes for studying literary styles
29
+ - Text generation in the style of William Shakespeare
30
+
31
+ ## Installation
32
+ Ensure you have the `transformers` library installed:
33
+ ```bash
34
+ pip install transformers
35
+ ```
36
+ ## Inference
37
+ ```python
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer
39
+ import torch
40
+
41
+ torch.random.manual_seed(0)
42
+
43
+ model_name = 'sartajbhuvaji/OLMo-1B-Base-Shakespeare'
44
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
45
+ model = AutoModelForCausalLM.from_pretrained(
46
+ model_name,
47
+ device_map="cuda",
48
+ torch_dtype="auto",
49
+ trust_remote_code=True,
50
+ )
51
+ model.to('cuda')
52
+
53
+ input_text = 'Hello how are you?'
54
+ input_ids = tokenizer.encode(input_text, return_tensors='pt').to('cuda')
55
+
56
+ output = model.generate(input_ids, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2)
57
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
58
+ print(generated_text)
59
+ '''
60
+ Hello how are you?
61
+ SECOND GENTLEMAN. I am a gentleman.
62
+ The Duke, my lord, and all the court are yours.
63
+
64
+ Enter a MESSENGER
65
+
66
+ THIRD GENTSLE MAN. Here's a messenger. What news? What's the news,
67
+ sir? How doth your lady? Is she well? Or is she
68
+ hears'd, beaten, or slain? The news is, sir
69
+ '''
70
+ ```
71
+ ## Fientuning Details
72
+ - **Global Step:** 4656
73
+ - **Training Loss:** 2.180167237763962
74
+ - **Train Runtime:** 2710.0517
75
+ - **Train Samples per second:** 13.742
76
+ - **Train Steps per second:** 1.718
77
+ - **Total Flos:** 3.3657646372356096e+16
78
+ - **Train Loss:** 2.180167237763962
79
+ - **Epoch:** 3.0
80
+
81
+
82
+ ## Training Curve
83
+
84
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6354695712edd0ed5dc46b04/cVDWr59JFTZ6evZwgw5NF.png)