metadata
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
base_model: robzchhangte/MizBERT
pipeline_tag: sentence-similarity
license: apache-2.0
MizoEmbed-1
MizoEmbed-1 is the first dense embedding model developed specifically for the Mizo language. This pioneering model provides vector representations of Mizo text, enabling various natural language processing tasks and applications for the underrepresented language.
The model maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: robzchhangte/MizBERT
- Embedding Dimension: 768 tokens
- Input Context Length: 512
- Language: Mizo
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sarkii/MizoEmbed-1")
# Run inference
sentences = [
'Mizoram a ka zin chu ka hlawkpui hle mai.',
'Ka zinna ram Mizoram ah Reiek Tlang a awm.',
'Inkhelh hi ka thiam vaklo mahse ka inkhel lui tho thin.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
License
This model is licensed under the Apache 2.0 License. See the LICENSE file for details.
Citation
MizBERT
@article{lalramhluna2024mizbert,
title={MizBERT: A Mizo BERT Model},
author={Lalramhluna, Robert and Dash, Sandeep and Pakray, Dr Partha},
journal={ACM Transactions on Asian and Low-Resource Language Information Processing},
year={2024},
publisher={ACM New York, NY}
}
SentenceTransformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}