Update training code
Browse files- training.ipynb +112 -251
training.ipynb
CHANGED
@@ -19,7 +19,7 @@
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
-
"execution_count":
|
23 |
"metadata": {
|
24 |
"id": "t-jXeSJKE1WM"
|
25 |
},
|
@@ -32,15 +32,19 @@
|
|
32 |
"import torch\n",
|
33 |
"from transformers import (\n",
|
34 |
" PreTrainedTokenizerFast,\n",
|
|
|
35 |
" DataCollatorForSeq2Seq,\n",
|
36 |
" Seq2SeqTrainingArguments,\n",
|
37 |
-
" BertJapaneseTokenizer,\n",
|
38 |
" Trainer\n",
|
39 |
")\n",
|
40 |
"from transformers.models.encoder_decoder.modeling_encoder_decoder import EncoderDecoderModel\n",
|
41 |
"\n",
|
42 |
"from datasets import load_dataset\n",
|
43 |
"\n",
|
|
|
|
|
|
|
|
|
44 |
"# encoder_model_name = \"xlm-roberta-base\"\n",
|
45 |
"encoder_model_name = \"cl-tohoku/bert-base-japanese-v2\"\n",
|
46 |
"decoder_model_name = \"skt/kogpt2-base-v2\""
|
@@ -48,31 +52,21 @@
|
|
48 |
},
|
49 |
{
|
50 |
"cell_type": "code",
|
51 |
-
"execution_count":
|
52 |
"metadata": {
|
53 |
"id": "nEW5trBtbykK"
|
54 |
},
|
55 |
-
"outputs": [
|
56 |
-
{
|
57 |
-
"data": {
|
58 |
-
"text/plain": [
|
59 |
-
"(device(type='cpu'), 0)"
|
60 |
-
]
|
61 |
-
},
|
62 |
-
"execution_count": 2,
|
63 |
-
"metadata": {},
|
64 |
-
"output_type": "execute_result"
|
65 |
-
}
|
66 |
-
],
|
67 |
"source": [
|
68 |
-
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
69 |
-
"# device = torch.device(\"cpu\")\n",
|
70 |
-
"
|
|
|
71 |
]
|
72 |
},
|
73 |
{
|
74 |
"cell_type": "code",
|
75 |
-
"execution_count":
|
76 |
"metadata": {
|
77 |
"id": "5ic7pUUBFU_v"
|
78 |
},
|
@@ -82,9 +76,9 @@
|
|
82 |
" def build_inputs_with_special_tokens(self, token_ids: List[int]) -> List[int]:\n",
|
83 |
" return token_ids + [self.eos_token_id] \n",
|
84 |
"\n",
|
85 |
-
"src_tokenizer =
|
86 |
-
"trg_tokenizer = GPT2Tokenizer.from_pretrained(decoder_model_name,
|
87 |
-
" pad_token='<pad>', mask_token='<mask>')"
|
88 |
]
|
89 |
},
|
90 |
{
|
@@ -98,25 +92,7 @@
|
|
98 |
},
|
99 |
{
|
100 |
"cell_type": "code",
|
101 |
-
"execution_count":
|
102 |
-
"metadata": {
|
103 |
-
"collapsed": false
|
104 |
-
},
|
105 |
-
"outputs": [],
|
106 |
-
"source": [
|
107 |
-
"dataset = load_dataset(\"sappho192/Tatoeba-Challenge-jpn-kor\")\n",
|
108 |
-
"# dataset = load_dataset(\"D:\\\\REPO\\\\Tatoeba-Challenge-jpn-kor\")\n",
|
109 |
-
"\n",
|
110 |
-
"train_dataset = dataset['train']\n",
|
111 |
-
"test_dataset = dataset['test']\n",
|
112 |
-
"\n",
|
113 |
-
"train_first_row = train_dataset[0]\n",
|
114 |
-
"test_first_row = test_dataset[0]"
|
115 |
-
]
|
116 |
-
},
|
117 |
-
{
|
118 |
-
"cell_type": "code",
|
119 |
-
"execution_count": 5,
|
120 |
"metadata": {
|
121 |
"id": "65L4O1c5FLKt"
|
122 |
},
|
@@ -124,7 +100,7 @@
|
|
124 |
"source": [
|
125 |
"class PairedDataset:\n",
|
126 |
" def __init__(self, \n",
|
127 |
-
" source_tokenizer:
|
128 |
" file_path: str = None,\n",
|
129 |
" dataset_raw: datasets.Dataset = None\n",
|
130 |
" ):\n",
|
@@ -132,7 +108,7 @@
|
|
132 |
" self.trg_tokenizer = target_tokenizer\n",
|
133 |
" \n",
|
134 |
" if file_path is not None:\n",
|
135 |
-
" with open(file_path, 'r') as fd:\n",
|
136 |
" reader = csv.reader(fd)\n",
|
137 |
" next(reader)\n",
|
138 |
" self.data = [row for row in reader]\n",
|
@@ -159,52 +135,66 @@
|
|
159 |
},
|
160 |
{
|
161 |
"cell_type": "code",
|
162 |
-
"execution_count":
|
163 |
"metadata": {
|
164 |
"collapsed": false
|
165 |
},
|
166 |
"outputs": [],
|
167 |
"source": [
|
168 |
-
"
|
169 |
-
"
|
170 |
-
"
|
171 |
-
"
|
172 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
"\n",
|
174 |
-
"
|
175 |
-
"
|
176 |
"\n",
|
177 |
-
"
|
178 |
-
"
|
179 |
]
|
180 |
},
|
181 |
{
|
182 |
"cell_type": "code",
|
183 |
-
"execution_count":
|
184 |
-
"metadata": {
|
185 |
-
|
186 |
-
},
|
187 |
-
"outputs": [
|
188 |
-
{
|
189 |
-
"data": {
|
190 |
-
"text/plain": [
|
191 |
-
"{'input_ids': [2, 33, 2181, 1402, 893, 15200, 893, 13507, 881, 933, 882, 829, 3], 'labels': [9085, 10936, 10993, 23363, 9134, 18368, 8006, 389, 1]}"
|
192 |
-
]
|
193 |
-
},
|
194 |
-
"execution_count": 7,
|
195 |
-
"metadata": {},
|
196 |
-
"output_type": "execute_result"
|
197 |
-
}
|
198 |
-
],
|
199 |
"source": [
|
200 |
-
"
|
201 |
-
"
|
202 |
-
"eval_dataset[0]"
|
203 |
]
|
204 |
},
|
205 |
{
|
206 |
"cell_type": "code",
|
207 |
-
"execution_count":
|
208 |
"metadata": {},
|
209 |
"outputs": [],
|
210 |
"source": [
|
@@ -226,20 +216,11 @@
|
|
226 |
},
|
227 |
{
|
228 |
"cell_type": "code",
|
229 |
-
"execution_count":
|
230 |
"metadata": {
|
231 |
"id": "I7uFbFYJFje8"
|
232 |
},
|
233 |
-
"outputs": [
|
234 |
-
{
|
235 |
-
"name": "stderr",
|
236 |
-
"output_type": "stream",
|
237 |
-
"text": [
|
238 |
-
"Some weights of GPT2LMHeadModel were not initialized from the model checkpoint at skt/kogpt2-base-v2 and are newly initialized: ['transformer.h.0.crossattention.c_attn.bias', 'transformer.h.0.crossattention.c_attn.weight', 'transformer.h.0.crossattention.c_proj.bias', 'transformer.h.0.crossattention.c_proj.weight', 'transformer.h.0.crossattention.q_attn.bias', 'transformer.h.0.crossattention.q_attn.weight', 'transformer.h.0.ln_cross_attn.bias', 'transformer.h.0.ln_cross_attn.weight', 'transformer.h.1.crossattention.c_attn.bias', 'transformer.h.1.crossattention.c_attn.weight', 'transformer.h.1.crossattention.c_proj.bias', 'transformer.h.1.crossattention.c_proj.weight', 'transformer.h.1.crossattention.q_attn.bias', 'transformer.h.1.crossattention.q_attn.weight', 'transformer.h.1.ln_cross_attn.bias', 'transformer.h.1.ln_cross_attn.weight', 'transformer.h.10.crossattention.c_attn.bias', 'transformer.h.10.crossattention.c_attn.weight', 'transformer.h.10.crossattention.c_proj.bias', 'transformer.h.10.crossattention.c_proj.weight', 'transformer.h.10.crossattention.q_attn.bias', 'transformer.h.10.crossattention.q_attn.weight', 'transformer.h.10.ln_cross_attn.bias', 'transformer.h.10.ln_cross_attn.weight', 'transformer.h.11.crossattention.c_attn.bias', 'transformer.h.11.crossattention.c_attn.weight', 'transformer.h.11.crossattention.c_proj.bias', 'transformer.h.11.crossattention.c_proj.weight', 'transformer.h.11.crossattention.q_attn.bias', 'transformer.h.11.crossattention.q_attn.weight', 'transformer.h.11.ln_cross_attn.bias', 'transformer.h.11.ln_cross_attn.weight', 'transformer.h.2.crossattention.c_attn.bias', 'transformer.h.2.crossattention.c_attn.weight', 'transformer.h.2.crossattention.c_proj.bias', 'transformer.h.2.crossattention.c_proj.weight', 'transformer.h.2.crossattention.q_attn.bias', 'transformer.h.2.crossattention.q_attn.weight', 'transformer.h.2.ln_cross_attn.bias', 'transformer.h.2.ln_cross_attn.weight', 'transformer.h.3.crossattention.c_attn.bias', 'transformer.h.3.crossattention.c_attn.weight', 'transformer.h.3.crossattention.c_proj.bias', 'transformer.h.3.crossattention.c_proj.weight', 'transformer.h.3.crossattention.q_attn.bias', 'transformer.h.3.crossattention.q_attn.weight', 'transformer.h.3.ln_cross_attn.bias', 'transformer.h.3.ln_cross_attn.weight', 'transformer.h.4.crossattention.c_attn.bias', 'transformer.h.4.crossattention.c_attn.weight', 'transformer.h.4.crossattention.c_proj.bias', 'transformer.h.4.crossattention.c_proj.weight', 'transformer.h.4.crossattention.q_attn.bias', 'transformer.h.4.crossattention.q_attn.weight', 'transformer.h.4.ln_cross_attn.bias', 'transformer.h.4.ln_cross_attn.weight', 'transformer.h.5.crossattention.c_attn.bias', 'transformer.h.5.crossattention.c_attn.weight', 'transformer.h.5.crossattention.c_proj.bias', 'transformer.h.5.crossattention.c_proj.weight', 'transformer.h.5.crossattention.q_attn.bias', 'transformer.h.5.crossattention.q_attn.weight', 'transformer.h.5.ln_cross_attn.bias', 'transformer.h.5.ln_cross_attn.weight', 'transformer.h.6.crossattention.c_attn.bias', 'transformer.h.6.crossattention.c_attn.weight', 'transformer.h.6.crossattention.c_proj.bias', 'transformer.h.6.crossattention.c_proj.weight', 'transformer.h.6.crossattention.q_attn.bias', 'transformer.h.6.crossattention.q_attn.weight', 'transformer.h.6.ln_cross_attn.bias', 'transformer.h.6.ln_cross_attn.weight', 'transformer.h.7.crossattention.c_attn.bias', 'transformer.h.7.crossattention.c_attn.weight', 'transformer.h.7.crossattention.c_proj.bias', 'transformer.h.7.crossattention.c_proj.weight', 'transformer.h.7.crossattention.q_attn.bias', 'transformer.h.7.crossattention.q_attn.weight', 'transformer.h.7.ln_cross_attn.bias', 'transformer.h.7.ln_cross_attn.weight', 'transformer.h.8.crossattention.c_attn.bias', 'transformer.h.8.crossattention.c_attn.weight', 'transformer.h.8.crossattention.c_proj.bias', 'transformer.h.8.crossattention.c_proj.weight', 'transformer.h.8.crossattention.q_attn.bias', 'transformer.h.8.crossattention.q_attn.weight', 'transformer.h.8.ln_cross_attn.bias', 'transformer.h.8.ln_cross_attn.weight', 'transformer.h.9.crossattention.c_attn.bias', 'transformer.h.9.crossattention.c_attn.weight', 'transformer.h.9.crossattention.c_proj.bias', 'transformer.h.9.crossattention.c_proj.weight', 'transformer.h.9.crossattention.q_attn.bias', 'transformer.h.9.crossattention.q_attn.weight', 'transformer.h.9.ln_cross_attn.bias', 'transformer.h.9.ln_cross_attn.weight']\n",
|
239 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
240 |
-
]
|
241 |
-
}
|
242 |
-
],
|
243 |
"source": [
|
244 |
"model = EncoderDecoderModel.from_encoder_decoder_pretrained(\n",
|
245 |
" encoder_model_name,\n",
|
@@ -251,174 +232,69 @@
|
|
251 |
},
|
252 |
{
|
253 |
"cell_type": "code",
|
254 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
"metadata": {
|
256 |
"id": "YFq2GyOAUV0W"
|
257 |
},
|
258 |
-
"outputs": [
|
259 |
-
{
|
260 |
-
"data": {
|
261 |
-
"text/html": [
|
262 |
-
"Finishing last run (ID:1vwqqxps) before initializing another..."
|
263 |
-
],
|
264 |
-
"text/plain": [
|
265 |
-
"<IPython.core.display.HTML object>"
|
266 |
-
]
|
267 |
-
},
|
268 |
-
"metadata": {},
|
269 |
-
"output_type": "display_data"
|
270 |
-
},
|
271 |
-
{
|
272 |
-
"data": {
|
273 |
-
"application/vnd.jupyter.widget-view+json": {
|
274 |
-
"model_id": "a82aa19a250b43f28d7ecc72eeebc88d",
|
275 |
-
"version_major": 2,
|
276 |
-
"version_minor": 0
|
277 |
-
},
|
278 |
-
"text/plain": [
|
279 |
-
"VBox(children=(Label(value='0.001 MB of 0.010 MB uploaded\\r'), FloatProgress(value=0.10972568578553615, max=1.…"
|
280 |
-
]
|
281 |
-
},
|
282 |
-
"metadata": {},
|
283 |
-
"output_type": "display_data"
|
284 |
-
},
|
285 |
-
{
|
286 |
-
"data": {
|
287 |
-
"text/html": [
|
288 |
-
" View run <strong style=\"color:#cdcd00\">jbert+kogpt2</strong> at: <a href='https://wandb.ai/sappho192/fftr-poc1/runs/1vwqqxps' target=\"_blank\">https://wandb.ai/sappho192/fftr-poc1/runs/1vwqqxps</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
|
289 |
-
],
|
290 |
-
"text/plain": [
|
291 |
-
"<IPython.core.display.HTML object>"
|
292 |
-
]
|
293 |
-
},
|
294 |
-
"metadata": {},
|
295 |
-
"output_type": "display_data"
|
296 |
-
},
|
297 |
-
{
|
298 |
-
"data": {
|
299 |
-
"text/html": [
|
300 |
-
"Find logs at: <code>.\\wandb\\run-20240131_135356-1vwqqxps\\logs</code>"
|
301 |
-
],
|
302 |
-
"text/plain": [
|
303 |
-
"<IPython.core.display.HTML object>"
|
304 |
-
]
|
305 |
-
},
|
306 |
-
"metadata": {},
|
307 |
-
"output_type": "display_data"
|
308 |
-
},
|
309 |
-
{
|
310 |
-
"data": {
|
311 |
-
"text/html": [
|
312 |
-
"Successfully finished last run (ID:1vwqqxps). Initializing new run:<br/>"
|
313 |
-
],
|
314 |
-
"text/plain": [
|
315 |
-
"<IPython.core.display.HTML object>"
|
316 |
-
]
|
317 |
-
},
|
318 |
-
"metadata": {},
|
319 |
-
"output_type": "display_data"
|
320 |
-
},
|
321 |
-
{
|
322 |
-
"data": {
|
323 |
-
"application/vnd.jupyter.widget-view+json": {
|
324 |
-
"model_id": "c2cd7f6fb5b1428b98b80a3cc82ec303",
|
325 |
-
"version_major": 2,
|
326 |
-
"version_minor": 0
|
327 |
-
},
|
328 |
-
"text/plain": [
|
329 |
-
"VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011288888888884685, max=1.0…"
|
330 |
-
]
|
331 |
-
},
|
332 |
-
"metadata": {},
|
333 |
-
"output_type": "display_data"
|
334 |
-
},
|
335 |
-
{
|
336 |
-
"data": {
|
337 |
-
"text/html": [
|
338 |
-
"Tracking run with wandb version 0.16.2"
|
339 |
-
],
|
340 |
-
"text/plain": [
|
341 |
-
"<IPython.core.display.HTML object>"
|
342 |
-
]
|
343 |
-
},
|
344 |
-
"metadata": {},
|
345 |
-
"output_type": "display_data"
|
346 |
-
},
|
347 |
-
{
|
348 |
-
"data": {
|
349 |
-
"text/html": [
|
350 |
-
"Run data is saved locally in <code>d:\\REPO\\ffxiv-ja-ko-translator\\wandb\\run-20240131_135421-etxsdxw2</code>"
|
351 |
-
],
|
352 |
-
"text/plain": [
|
353 |
-
"<IPython.core.display.HTML object>"
|
354 |
-
]
|
355 |
-
},
|
356 |
-
"metadata": {},
|
357 |
-
"output_type": "display_data"
|
358 |
-
},
|
359 |
-
{
|
360 |
-
"data": {
|
361 |
-
"text/html": [
|
362 |
-
"Syncing run <strong><a href='https://wandb.ai/sappho192/fftr-poc1/runs/etxsdxw2' target=\"_blank\">jbert+kogpt2</a></strong> to <a href='https://wandb.ai/sappho192/fftr-poc1' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
363 |
-
],
|
364 |
-
"text/plain": [
|
365 |
-
"<IPython.core.display.HTML object>"
|
366 |
-
]
|
367 |
-
},
|
368 |
-
"metadata": {},
|
369 |
-
"output_type": "display_data"
|
370 |
-
},
|
371 |
-
{
|
372 |
-
"data": {
|
373 |
-
"text/html": [
|
374 |
-
" View project at <a href='https://wandb.ai/sappho192/fftr-poc1' target=\"_blank\">https://wandb.ai/sappho192/fftr-poc1</a>"
|
375 |
-
],
|
376 |
-
"text/plain": [
|
377 |
-
"<IPython.core.display.HTML object>"
|
378 |
-
]
|
379 |
-
},
|
380 |
-
"metadata": {},
|
381 |
-
"output_type": "display_data"
|
382 |
-
},
|
383 |
-
{
|
384 |
-
"data": {
|
385 |
-
"text/html": [
|
386 |
-
" View run at <a href='https://wandb.ai/sappho192/fftr-poc1/runs/etxsdxw2' target=\"_blank\">https://wandb.ai/sappho192/fftr-poc1/runs/etxsdxw2</a>"
|
387 |
-
],
|
388 |
-
"text/plain": [
|
389 |
-
"<IPython.core.display.HTML object>"
|
390 |
-
]
|
391 |
-
},
|
392 |
-
"metadata": {},
|
393 |
-
"output_type": "display_data"
|
394 |
-
}
|
395 |
-
],
|
396 |
"source": [
|
397 |
"# for Trainer\n",
|
398 |
"import wandb\n",
|
399 |
"\n",
|
400 |
"collate_fn = DataCollatorForSeq2Seq(src_tokenizer, model)\n",
|
401 |
-
"wandb.init(project=\"
|
402 |
"\n",
|
403 |
"arguments = Seq2SeqTrainingArguments(\n",
|
|
|
404 |
" output_dir='dump',\n",
|
405 |
" do_train=True,\n",
|
406 |
" do_eval=True,\n",
|
407 |
" evaluation_strategy=\"epoch\",\n",
|
408 |
" save_strategy=\"epoch\",\n",
|
409 |
-
" num_train_epochs=
|
410 |
" # num_train_epochs=25,\n",
|
411 |
-
" per_device_train_batch_size=
|
412 |
-
"
|
413 |
-
" #
|
414 |
-
" per_device_eval_batch_size=
|
415 |
-
" # per_device_eval_batch_size=30,\n",
|
416 |
-
" # per_device_eval_batch_size=64,\n",
|
417 |
" warmup_ratio=0.1,\n",
|
418 |
" gradient_accumulation_steps=4,\n",
|
419 |
" save_total_limit=5,\n",
|
420 |
" dataloader_num_workers=1,\n",
|
421 |
-
"
|
422 |
" load_best_model_at_end=True,\n",
|
423 |
" report_to='wandb'\n",
|
424 |
")\n",
|
@@ -454,26 +330,11 @@
|
|
454 |
},
|
455 |
{
|
456 |
"cell_type": "code",
|
457 |
-
"execution_count":
|
458 |
"metadata": {
|
459 |
"id": "7vTqAgW6Ve3J"
|
460 |
},
|
461 |
-
"outputs": [
|
462 |
-
{
|
463 |
-
"data": {
|
464 |
-
"application/vnd.jupyter.widget-view+json": {
|
465 |
-
"model_id": "0afe460e9f614d9a90379cf99fcf8af3",
|
466 |
-
"version_major": 2,
|
467 |
-
"version_minor": 0
|
468 |
-
},
|
469 |
-
"text/plain": [
|
470 |
-
" 0%| | 0/9671328 [00:00<?, ?it/s]"
|
471 |
-
]
|
472 |
-
},
|
473 |
-
"metadata": {},
|
474 |
-
"output_type": "display_data"
|
475 |
-
}
|
476 |
-
],
|
477 |
"source": [
|
478 |
"trainer.train()\n",
|
479 |
"\n",
|
@@ -484,12 +345,12 @@
|
|
484 |
},
|
485 |
{
|
486 |
"cell_type": "code",
|
487 |
-
"execution_count":
|
488 |
"metadata": {},
|
489 |
"outputs": [],
|
490 |
"source": [
|
491 |
"# import wandb\n",
|
492 |
-
"
|
493 |
]
|
494 |
}
|
495 |
],
|
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
+
"execution_count": null,
|
23 |
"metadata": {
|
24 |
"id": "t-jXeSJKE1WM"
|
25 |
},
|
|
|
32 |
"import torch\n",
|
33 |
"from transformers import (\n",
|
34 |
" PreTrainedTokenizerFast,\n",
|
35 |
+
" AutoTokenizer,\n",
|
36 |
" DataCollatorForSeq2Seq,\n",
|
37 |
" Seq2SeqTrainingArguments,\n",
|
|
|
38 |
" Trainer\n",
|
39 |
")\n",
|
40 |
"from transformers.models.encoder_decoder.modeling_encoder_decoder import EncoderDecoderModel\n",
|
41 |
"\n",
|
42 |
"from datasets import load_dataset\n",
|
43 |
"\n",
|
44 |
+
"import os\n",
|
45 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
46 |
+
"# os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"2\"\n",
|
47 |
+
"\n",
|
48 |
"# encoder_model_name = \"xlm-roberta-base\"\n",
|
49 |
"encoder_model_name = \"cl-tohoku/bert-base-japanese-v2\"\n",
|
50 |
"decoder_model_name = \"skt/kogpt2-base-v2\""
|
|
|
52 |
},
|
53 |
{
|
54 |
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
"metadata": {
|
57 |
"id": "nEW5trBtbykK"
|
58 |
},
|
59 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
"source": [
|
61 |
+
"# device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
62 |
+
"# # device = torch.device(\"cpu\")\n",
|
63 |
+
"# torch.cuda.set_device(device)\n",
|
64 |
+
"# device, torch.cuda.device_count()"
|
65 |
]
|
66 |
},
|
67 |
{
|
68 |
"cell_type": "code",
|
69 |
+
"execution_count": null,
|
70 |
"metadata": {
|
71 |
"id": "5ic7pUUBFU_v"
|
72 |
},
|
|
|
76 |
" def build_inputs_with_special_tokens(self, token_ids: List[int]) -> List[int]:\n",
|
77 |
" return token_ids + [self.eos_token_id] \n",
|
78 |
"\n",
|
79 |
+
"src_tokenizer = AutoTokenizer.from_pretrained(encoder_model_name, use_fast=False)\n",
|
80 |
+
"trg_tokenizer = GPT2Tokenizer.from_pretrained(decoder_model_name, use_fast=False,\n",
|
81 |
+
" bos_token='</s>', eos_token='</s>', unk_token='<unk>', pad_token='<pad>', mask_token='<mask>')"
|
82 |
]
|
83 |
},
|
84 |
{
|
|
|
92 |
},
|
93 |
{
|
94 |
"cell_type": "code",
|
95 |
+
"execution_count": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
"metadata": {
|
97 |
"id": "65L4O1c5FLKt"
|
98 |
},
|
|
|
100 |
"source": [
|
101 |
"class PairedDataset:\n",
|
102 |
" def __init__(self, \n",
|
103 |
+
" source_tokenizer: AutoTokenizer, target_tokenizer: GPT2Tokenizer,\n",
|
104 |
" file_path: str = None,\n",
|
105 |
" dataset_raw: datasets.Dataset = None\n",
|
106 |
" ):\n",
|
|
|
108 |
" self.trg_tokenizer = target_tokenizer\n",
|
109 |
" \n",
|
110 |
" if file_path is not None:\n",
|
111 |
+
" with open(file_path, 'r', encoding=\"utf-8\") as fd:\n",
|
112 |
" reader = csv.reader(fd)\n",
|
113 |
" next(reader)\n",
|
114 |
" self.data = [row for row in reader]\n",
|
|
|
135 |
},
|
136 |
{
|
137 |
"cell_type": "code",
|
138 |
+
"execution_count": null,
|
139 |
"metadata": {
|
140 |
"collapsed": false
|
141 |
},
|
142 |
"outputs": [],
|
143 |
"source": [
|
144 |
+
"# DATASET_TARGET = \"TATOEBA_2023\"\n",
|
145 |
+
"# DATASET_TARGET = \"FFAC\"\n",
|
146 |
+
"DATASET_TARGET = \"AIHUB\"\n",
|
147 |
+
"\n",
|
148 |
+
"if (DATASET_TARGET == \"TATOEBA_2023\"):\n",
|
149 |
+
" # dataset = load_dataset(\"sappho192/Tatoeba-Challenge-jpn-kor\")\n",
|
150 |
+
" dataset = load_dataset(\"/home/akalive/dataset/Tatoeba-Challenge-jpn-kor\")\n",
|
151 |
+
"\n",
|
152 |
+
" train_dataset = dataset['train']\n",
|
153 |
+
" test_dataset = dataset['test']\n",
|
154 |
+
"\n",
|
155 |
+
" train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, dataset_raw=train_dataset)\n",
|
156 |
+
" eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, dataset_raw=test_dataset)\n",
|
157 |
+
"elif (DATASET_TARGET == \"FFAC\"):\n",
|
158 |
+
" DATA_ROOT = '/home/akalive/dataset/ffac/output'\n",
|
159 |
+
" FILE_FFAC_FULL = 'ffac_full.csv'\n",
|
160 |
+
" FILE_FFAC_TEST = 'ffac_test.csv'\n",
|
161 |
+
" FILE_JA_KO_TRAIN = 'tteb_train.csv'\n",
|
162 |
+
" FILE_JA_KO_TEST = 'tteb_test.csv'\n",
|
163 |
+
"\n",
|
164 |
+
" # train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, file_path=f'{DATA_ROOT}/{FILE_FFAC_FULL}')\n",
|
165 |
+
" # eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, file_path=f'{DATA_ROOT}/{FILE_FFAC_TEST}') \n",
|
166 |
+
"\n",
|
167 |
+
" train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, file_path=f'{DATA_ROOT}/{FILE_JA_KO_TRAIN}')\n",
|
168 |
+
" eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, file_path=f'{DATA_ROOT}/{FILE_JA_KO_TEST}')\n",
|
169 |
+
"elif (DATASET_TARGET == \"AIHUB\"):\n",
|
170 |
+
" # AIHUB dataset spent 25~33GB of VRAM with batch_size=30 while training.\n",
|
171 |
+
" DATA_ROOT = '/home/akalive/dataset/jkpair/data'\n",
|
172 |
+
" FILE_TRAIN = 'train.csv'\n",
|
173 |
+
" FILE_VAL = 'validation.csv'\n",
|
174 |
+
"\n",
|
175 |
+
" train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, file_path=f'{DATA_ROOT}/{FILE_TRAIN}')\n",
|
176 |
+
" eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, file_path=f'{DATA_ROOT}/{FILE_VAL}')\n",
|
177 |
"\n",
|
178 |
+
"train_first_row = train_dataset[0]\n",
|
179 |
+
"eval_first_row = eval_dataset[0]\n",
|
180 |
"\n",
|
181 |
+
"print(train_first_row)\n",
|
182 |
+
"print(eval_first_row)"
|
183 |
]
|
184 |
},
|
185 |
{
|
186 |
"cell_type": "code",
|
187 |
+
"execution_count": null,
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
"source": [
|
191 |
+
"print(train_dataset)\n",
|
192 |
+
"train_dataset[0]"
|
|
|
193 |
]
|
194 |
},
|
195 |
{
|
196 |
"cell_type": "code",
|
197 |
+
"execution_count": null,
|
198 |
"metadata": {},
|
199 |
"outputs": [],
|
200 |
"source": [
|
|
|
216 |
},
|
217 |
{
|
218 |
"cell_type": "code",
|
219 |
+
"execution_count": null,
|
220 |
"metadata": {
|
221 |
"id": "I7uFbFYJFje8"
|
222 |
},
|
223 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
"source": [
|
225 |
"model = EncoderDecoderModel.from_encoder_decoder_pretrained(\n",
|
226 |
" encoder_model_name,\n",
|
|
|
232 |
},
|
233 |
{
|
234 |
"cell_type": "code",
|
235 |
+
"execution_count": null,
|
236 |
+
"metadata": {},
|
237 |
+
"outputs": [],
|
238 |
+
"source": [
|
239 |
+
"class CustomTrainingArguments(Seq2SeqTrainingArguments):\n",
|
240 |
+
" def __init__(self,*args, **kwargs):\n",
|
241 |
+
" super(CustomTrainingArguments, self).__init__(*args, **kwargs)\n",
|
242 |
+
"\n",
|
243 |
+
" @property\n",
|
244 |
+
" def device(self) -> \"torch.device\":\n",
|
245 |
+
" \"\"\"\n",
|
246 |
+
" The device used by this process.\n",
|
247 |
+
" Name the device the number you use.\n",
|
248 |
+
" \"\"\"\n",
|
249 |
+
" return torch.device(\"cuda:0\")\n",
|
250 |
+
"\n",
|
251 |
+
" @property\n",
|
252 |
+
" def n_gpu(self):\n",
|
253 |
+
" \"\"\"\n",
|
254 |
+
" The number of GPUs used by this process.\n",
|
255 |
+
" Note:\n",
|
256 |
+
" This will only be greater than one when you have multiple GPUs available but are not using distributed\n",
|
257 |
+
" training. For distributed training, it will always be 1.\n",
|
258 |
+
" \"\"\"\n",
|
259 |
+
" # Make sure `self._n_gpu` is properly setup.\n",
|
260 |
+
" # _ = self._setup_devices\n",
|
261 |
+
" # I set to one manullay\n",
|
262 |
+
" self._n_gpu = 1\n",
|
263 |
+
" return self._n_gpu\n"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "code",
|
268 |
+
"execution_count": null,
|
269 |
"metadata": {
|
270 |
"id": "YFq2GyOAUV0W"
|
271 |
},
|
272 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
"source": [
|
274 |
"# for Trainer\n",
|
275 |
"import wandb\n",
|
276 |
"\n",
|
277 |
"collate_fn = DataCollatorForSeq2Seq(src_tokenizer, model)\n",
|
278 |
+
"wandb.init(project=\"aihub-gt-2023\", name='jbert+kogpt2')\n",
|
279 |
"\n",
|
280 |
"arguments = Seq2SeqTrainingArguments(\n",
|
281 |
+
"# arguments = CustomTrainingArguments(\n",
|
282 |
" output_dir='dump',\n",
|
283 |
" do_train=True,\n",
|
284 |
" do_eval=True,\n",
|
285 |
" evaluation_strategy=\"epoch\",\n",
|
286 |
" save_strategy=\"epoch\",\n",
|
287 |
+
" num_train_epochs=5, # for 40GB\n",
|
288 |
" # num_train_epochs=25,\n",
|
289 |
+
" # per_device_train_batch_size=15,\n",
|
290 |
+
" per_device_train_batch_size=30, # takes 40GB\n",
|
291 |
+
" # per_device_eval_batch_size=10,\n",
|
292 |
+
" per_device_eval_batch_size=10,\n",
|
|
|
|
|
293 |
" warmup_ratio=0.1,\n",
|
294 |
" gradient_accumulation_steps=4,\n",
|
295 |
" save_total_limit=5,\n",
|
296 |
" dataloader_num_workers=1,\n",
|
297 |
+
" fp16=True, # ENABLE if CUDA is enabled\n",
|
298 |
" load_best_model_at_end=True,\n",
|
299 |
" report_to='wandb'\n",
|
300 |
")\n",
|
|
|
330 |
},
|
331 |
{
|
332 |
"cell_type": "code",
|
333 |
+
"execution_count": null,
|
334 |
"metadata": {
|
335 |
"id": "7vTqAgW6Ve3J"
|
336 |
},
|
337 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
"source": [
|
339 |
"trainer.train()\n",
|
340 |
"\n",
|
|
|
345 |
},
|
346 |
{
|
347 |
"cell_type": "code",
|
348 |
+
"execution_count": null,
|
349 |
"metadata": {},
|
350 |
"outputs": [],
|
351 |
"source": [
|
352 |
"# import wandb\n",
|
353 |
+
"wandb.finish()"
|
354 |
]
|
355 |
}
|
356 |
],
|