santoshvutukuri's picture
update model card README.md
debd188
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-base-esg-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: train
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.5073101990487934
          - name: Recall
            type: recall
            value: 0.4846852911477617
          - name: F1
            type: f1
            value: 0.4957397366382649
          - name: Accuracy
            type: accuracy
            value: 0.8926532053923588

xlm-roberta-base-esg-ner

This model is a fine-tuned version of xlm-roberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3380
  • Precision: 0.5073
  • Recall: 0.4847
  • F1: 0.4957
  • Accuracy: 0.8927

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4859 1.0 1756 0.3975 0.4732 0.4137 0.4415 0.8766
0.331 2.0 3512 0.3380 0.5073 0.4847 0.4957 0.8927

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1