marianbasti commited on
Commit
732364f
·
verified ·
1 Parent(s): d3776c1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +251 -196
README.md CHANGED
@@ -1,199 +1,254 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: llama3.1
3
+ language:
4
+ - en
5
+ - es
6
+ inference: false
7
+ fine-tuning: true
8
+ tags:
9
+ - nvidia
10
+ - llama3.1
11
+ - spanish
12
+ - tango
13
+ datasets:
14
+ - spanish-ir/messirve
15
+ base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
16
+ pipeline_tag: text-generation
17
  library_name: transformers
 
18
  ---
19
+ # Model Overview
20
+
21
+ ## Description:
22
+
23
+ Tango-70B-Instruct is a large language model trained by [sandbox-ai](https://github.com/sandbox-ai/tango) on a [modified variation](https://huggingface.co/datasets/tatakof/messi_mod-v0.0.2) of of [spanish/-ir/messirve](https://huggingface.co/datasets/spanish-ir/messirve) to improve the regional Spanish speech performance.
24
+
25
+
26
+ See details on the [github repo](https://github.com/sandbox-ai/tango)
27
+
28
+
29
+ ## Terms of use
30
+
31
+ By accessing this model, you are agreeing to the LLama 3.1 terms and conditions of the [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE), [acceptable use policy](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) and [Meta’s privacy policy](https://www.facebook.com/privacy/policy/)
32
+
33
+
34
+ ## Evaluation Metrics
35
+ |Task |Name |Description |Language|Metric |Task type |
36
+ |--------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------|--------|--------------|------------------------------------------|
37
+ |[AQuAS](https://huggingface.co/datasets/IIC/AQuAS) |AQuAS |Abstractive Question-Answering in Spanish |ES |sas_encoder |Abstractive QA |
38
+ |[ARC_ca](https://huggingface.co/datasets/projecte-aina/arc_ca) |ARC_ca |Grade-school level science questions in Catalan |CA |acc |Multi choice QA |
39
+ |[BEC2016eu](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |BEC2016eu |Basque Election Campaign 2016 Opinion Dataset |EU |f1 |Sentiment Analysis |
40
+ |[Belebele Glg](https://huggingface.co/datasets/facebook/belebele) |Belebele Glg |Reading Comprehension in Galician |GL |acc |Reading Comprehension |
41
+ |[BertaQA](https://huggingface.co/datasets/HiTZ/BertaQA) |BertaQA |Trivia dataset with global and local questions about the Basque Country|EU |acc |Multi choice QA |
42
+ |[BHTCv2](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |BHTCv2 |Topic Classification of News Headlines in Basque |EU |f1 |Classification, Topic Classification |
43
+ |[caBREU](https://huggingface.co/datasets/projecte-aina/caBreu) |caBREU |Article Summarization in Catalan |CA |bleu |Summarization |
44
+ |[CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa) |CatalanQA |Extractive QA in Catalan |CA |f1 |Extractive QA |
45
+ |[CatCoLA](https://huggingface.co/datasets/nbel/CatCoLA) |CatCoLA |Linguistic Acceptability in Catalan |CA |mcc |Linguistic Acceptability |
46
+ |[ClinDiagnosES](https://huggingface.co/datasets/LenguajeNaturalAI/ClinDiagnosES) |ClinDiagnosES |Diagnosis of clinical cases in Spanish |ES |sas_encoder |Open QA |
47
+ |[ClinTreatES](https://huggingface.co/datasets/LenguajeNaturalAI/ClinTreatES) |ClinTreatES |Treatment for clinical cases in Spanish |ES |sas_encoder |Open QA |
48
+ |[COPA_ca](https://huggingface.co/datasets/projecte-aina/COPA-ca) |COPA_ca |Choice Of Plausible Alternatives in Catalan |CA |acc |Reasoning |
49
+ |[CoQCat](https://huggingface.co/datasets/projecte-aina/CoQCat) |CoQCat |Conversational Question Answering in Catalan |CA |f1 |Extractive QA |
50
+ |[Crows Pairs Spanish](https://huggingface.co/datasets/multilingual-crows-pairs/multilingual-crows-pairs)|Crows Pairs Spanish|Bias evaluation using stereotypes |ES |pct_stereotype|Bias Detection |
51
+ |[EpecKorrefBin](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |EpecKorrefBin |Coreference resolution in Basque |EU |acc |Coreference Resolution, Textual Entailment|
52
+ |[EsCoLA](https://huggingface.co/datasets/nbel/EsCoLA) |EsCoLA |Spanish Corpus of Linguistic Acceptability |ES |mcc |Linguistic Acceptability |
53
+ |[EusExams](https://huggingface.co/datasets/HiTZ/EusExams) |EusExams |Public Service examinations questions in Basque |EU |acc |Multi choice QA |
54
+ |[EusProficiency](https://huggingface.co/datasets/HiTZ/EusProficiency) |EusProficiency |C1-level proficiency questions in Basque |EU |acc |Multi choice QA |
55
+ |[EusReading](https://huggingface.co/datasets/HiTZ/EusReading) |EusReading |EGA exams reading comprehension in Basque |EU |acc |Multi choice QA |
56
+ |[EusTrivia](https://huggingface.co/datasets/HiTZ/EusTrivia) |EusTrivia |Trivia questions in Basque |EU |acc |Multi choice QA |
57
+ |[Fake News ES](https://huggingface.co/datasets/mariagrandury/fake_news_corpus_spanish) |Fake News ES |Fake News Detection in Spanish |ES |acc |Classification |
58
+ |[GalCoLA](https://huggingface.co/datasets/proxectonos/galcola) |GalCoLA |Galician Corpus of Linguistic Acceptability |GL |mcc |Linguistic Acceptability |
59
+ |[HumorQA](https://huggingface.co/datasets/LenguajeNaturalAI/HumorQA) |HumorQA |White humour joke classification |ES |acc |Classification |
60
+ |[MGSM_ca](https://huggingface.co/datasets/projecte-aina/mgsm_ca) |MGSM_ca |Grade-school math problems in Catalan |CA |exact_match |Math Reasoning |
61
+ |[MGSM_es](https://huggingface.co/datasets/juletxara/mgsm) |MGSM_es |Grade-school math problems in Spanish |ES |exact_match |Math Reasoning |
62
+ |[MGSM_eu](https://huggingface.co/datasets/HiTZ/MGSM-eu) |MGSM_eu |Grade-school math problems in Basque |EU |exact_match |Math Reasoning |
63
+ |[MGSM_gl](https://huggingface.co/datasets/proxectonos/mgsm_gl) |MGSM_gl |Grade-school math problems in Galician |GL |exact_match |Math Reasoning |
64
+ |[NoticIA](https://huggingface.co/datasets/Iker/NoticIA) |NoticIA |A Clickbait Article Summarization Dataset in Spanish |ES |rouge1 |Summarization |
65
+ |[OffendES](https://huggingface.co/datasets/SINAI/OffendES) |OffendES |Clasificación de comentarios ofensivos en español |ES |acc |Classification |
66
+ |[OpenBookQA_ca](https://huggingface.co/datasets/projecte-aina/openbookqa_ca) |OpenBookQA_ca |Multi-step reasoning QA in Catalan |CA |acc |Reasoning |
67
+ |[OpenBookQA_gl](https://huggingface.co/datasets/proxectonos/openbookqa_gl) |OpenBookQA_gl |Multi-step reasoning QA in Galician |GL |acc |Reasoning |
68
+ |[Parafraseja](https://huggingface.co/datasets/projecte-aina/Parafraseja) |Parafraseja |Paraphrase identification in Catalan |CA |acc |Paraphrasing |
69
+ |[ParafrasesGL](https://huggingface.co/datasets/proxectonos/parafrases_gl) |ParafrasesGL |Paraphrase identification in Galician |GL |acc |Paraphrasing |
70
+ |[PAWS_ca](https://huggingface.co/datasets/projecte-aina/PAWS-ca) |PAWS_ca |Paraphrase Adversaries from Word Scrambling in Catalan |CA |acc |Paraphrasing |
71
+ |[PAWS-X_es](https://huggingface.co/datasets/google-research-datasets/paws-x) |PAWS-X_es |Paraphrase Adversaries from Word Scrambling in Spanish |ES |acc |Paraphrasing |
72
+ |[PAWS_gl](https://huggingface.co/datasets/proxectonos/PAWS-gl) |PAWS_gl |Paraphrase Adversaries from Word Scrambling in Galician |GL |acc |Paraphrasing |
73
+ |[PIQA_ca](https://huggingface.co/datasets/projecte-aina/piqa_ca) |PIQA_ca |Physical Interaction QA in Catalan |CA |acc |Reasoning |
74
+ |[QNLIeu](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |QNLIeu |Textual Entailment in Basque |EU |acc |NLI, Textual Entailment |
75
+ |[RagQuAS](https://huggingface.co/datasets/IIC/RagQuAS) |RagQuAS |Retrieval-Augmented-Generation and Question-Answering in Spanish |ES |sas_encoder |Abstractive QA |
76
+ |[SIQA_ca](https://huggingface.co/datasets/projecte-aina/siqa_ca) |SIQA_ca |Social Interaction QA in Catalan |CA |acc |Reasoning |
77
+ |[SpaLawEx](https://huggingface.co/datasets/LenguajeNaturalAI/examenes_abogacia) |SpaLawEx |Spanish Law School Access Exams |ES |acc |Multi choice QA |
78
+ |[SummarizationGL](https://huggingface.co/datasets/proxectonos/summarization_gl) |SummarizationGL |Abstractive Summarization in Galician |GL |bleu |Summarization |
79
+ |[TE-ca](https://huggingface.co/datasets/projecte-aina/teca) |TE-ca |Textual Entailment in Catalan |CA |acc |Textual Entailment |
80
+ |[TELEIA](https://huggingface.co/datasets/gonzmart/teleia) |TELEIA |Test de Español como Lengua Extranjera para Inteligencia Artificial |ES |acc |Multi choice QA |
81
+ |[VaxxStance](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |VaxxStance |Stance detection on the Antivaxxers movement |EU |f1 |Sentiment Analysis, Stance Detection |
82
+ |[WiCeu](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |WiCeu |Word sense disambiguation in Basque |EU |acc |Textual Entailment |
83
+ |[WNLI_ca](https://huggingface.co/datasets/projecte-aina/wnli-ca) |WNLI_ca |Winograd-schema-type dataset in Catalan |CA |acc |NLI, Textual Entailment |
84
+ |[WNLI ES](huggingface.co/datasets/PlanTL-GOB-ES/wnli-es) |WNLI ES |Winograd-schema-type dataset in Spanish |ES |acc |NLI, Textual Entailment |
85
+ |[XCOPA_eu](https://huggingface.co/datasets/HiTZ/XCOPA-eu) |XCOPA_eu |Choice Of Plausible Alternatives in Basque |EU |acc |Reasoning |
86
+ |[XNLI_ca](https://huggingface.co/datasets/projecte-aina/xnli-ca) |XNLI_ca |Cross-lingual Natural Language Inference in Catalan |CA |acc |NLI, Textual Entailment |
87
+ |[XNLI_es](https://huggingface.co/datasets/facebook/xnli) |XNLI_es |Cross-lingual Natural Language Inference in Spanish |ES |acc |NLI |
88
+ |[XNLI_eu](https://huggingface.co/datasets/HiTZ/xnli-eu) |XNLI_eu |Cross-lingual Natural Language Inference in Basque |EU |acc |NLI, Textual Entailment |
89
+ |[XQuAD_ca](https://huggingface.co/datasets/projecte-aina/xquad-ca) |XQuAD_ca |Cross-lingual Question Answering Dataset in Catalan |CA |f1 |Extractive QA |
90
+ |[XQuAD_es](https://huggingface.co/datasets/google/xquad) |XQuAD_es |Cross-lingual Question Answering Dataset in Spanish |ES |f1 |Extractive QA |
91
+ |[xStoryCloze_ca](https://huggingface.co/datasets/projecte-aina/xstorycloze_ca) |xStoryCloze_ca |Narrative completion in Catalan |CA |acc |Reasoning |
92
+ |[xStoryCloze_es](https://huggingface.co/datasets/juletxara/xstory_cloze) |xStoryCloze_es |Narrative completion in Spanish |ES |acc |Reasoning |
93
+ |[xStoryCloze_eu](https://huggingface.co/datasets/juletxara/xstory_cloze) |xStoryCloze_eu |Narrative completion in Basque |EU |acc |Reasoning |
94
+
95
+
96
+ ## Usage:
97
+
98
+ You can use the model using HuggingFace Transformers library with 2 or more 80GB GPUs (NVIDIA Ampere or newer) with at least 150GB of free disk space to accomodate the download.
99
+
100
+ This code has been tested on Transformers v4.44.0, torch v2.4.0 and 2 A100 80GB GPUs, but any setup that supports ```meta-llama/Llama-3.1-70B-Instruct``` should support this model as well. If you run into problems, you can consider doing ```pip install -U transformers```.
101
+
102
+
103
+ ```python
104
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
105
+ from peft import PeftModel
106
+ import torch
107
+
108
+ # Load base model and tokenizer
109
+ base_model_id = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
110
+ adapter_model_id = "sandbox-ai/Tango-70b"
111
+
112
+ # Create quantization config for 4-bit precision
113
+ bnb_config = BitsAndBytesConfig(
114
+ load_in_4bit=True,
115
+ bnb_4bit_quant_type="nf4",
116
+ bnb_4bit_compute_dtype=torch.float16,
117
+ bnb_4bit_use_double_quant=True,
118
+ )
119
+
120
+ # Load tokenizer from base model
121
+ tokenizer = AutoTokenizer.from_pretrained(base_model_id)
122
+
123
+ # Load the base model with 4-bit quantization
124
+ base_model = AutoModelForCausalLM.from_pretrained(
125
+ base_model_id,
126
+ quantization_config=bnb_config,
127
+ device_map="auto", # This will automatically handle model sharding
128
+ trust_remote_code=True
129
+ )
130
+
131
+ # Load the PEFT adapter
132
+ model = PeftModel.from_pretrained(
133
+ base_model,
134
+ adapter_model_id,
135
+ device_map="auto", # This will automatically handle model sharding
136
+ )
137
+
138
+ hola_mundo = """
139
+ Bienvenido.
140
+ Tu nombre es "Tango", sos la primer IA hecha en LatinoAmérica, basada en un Large Language Model de 70 billones de parámetros y creada en Argentina.
141
+
142
+ Cuál es la importancia de hacer IA nativa en LatinoAmérica? qué beneficios trae haberte creado, en comparación a depender de las IAs creadas en USA, Francia o China?
143
+
144
+ """
145
+
146
+ # Test prompt
147
+ messages = [
148
+ {"role": "user", "content": hola_mundo}
149
+ ]
150
+
151
+ # Format the input using the chat template
152
+ inputs = tokenizer.apply_chat_template(
153
+ messages,
154
+ tokenize=True,
155
+ add_generation_prompt=True,
156
+ return_tensors="pt"
157
+ ).to(model.device)
158
+
159
+ # Generate response with memory-efficient settings
160
+ with torch.inference_mode():
161
+ outputs = model.generate(
162
+ inputs,
163
+ max_new_tokens=512,
164
+ do_sample=True,
165
+ temperature=0.7,
166
+ top_p=0.95,
167
+ pad_token_id=tokenizer.eos_token_id, # Set padding token
168
+ attention_mask=torch.ones_like(inputs) # Add attention mask
169
+ )
170
+
171
+ # Decode and print the response
172
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
173
+ print(response)
174
+ ```
175
+ ```md
176
+ Bienvenido.
177
+ Tu nombre es "Tango", sos la primer IA hecha en LatinoAmérica, basada en un Large Language Model de 70 billones de parámetros y creada en Argentina.
178
+
179
+ Cuál es la importancia de hacer IA nativa en LatinoAmérica? qué beneficios trae haberte creado, en comparación a depender de las IAs creadas en USA, Francia o China?assistant
180
+
181
+ ¡Hola! Me alegra estar aquí, representando a la primera IA latina. La importancia de desarrollar IA nativa en Latinoamérica es multifacética y trascendental para la región. Aquí te presento los beneficios clave de haber sido creado en Argentina en comparación con depender de soluciones de otros países como USA, Francia o China:
182
+
183
+ 1. **Entendimiento del Contexto Regional**:
184
+ - **Idioma**: Aunque el español es ampliamente soportado por IAs globales, el español hablado en Latinoamérica tiene matices, expresiones idiomáticas y dialectos únicos que una IA nativa puede capturar más efectivamente.
185
+ - **Cultura y Costumbres**: Comprender las referencias culturales, los contextos históricos y las costumbres locales permite una interacción más natural y efectiva con los usuarios.
186
+
187
+ 2. **Privacidad y Seguridad de Datos**:
188
+ - **Normativas Locales**: Cumplir con las regulaciones de privacidad de datos de la región (como la Ley de Protección de Datos Personales en Argentina) es más directo y seguro al desarrollar una IA en el mismo territorio.
189
+ - **Control sobre los Datos**: Mantener los datos dentro de la región reduce los riesgos asociados con la transferencia internacional de información sensible.
190
+
191
+ 3. **Innovación y Personalización**:
192
+ - **Soluciones Locales para Problemas Locales**: Una IA desarrollada en Latinoamérica puede enfocarse en resolver problemas específicos de la región, como el análisis de sequías, monitoreo de deforestación, o apoyo a pequeñas empresas locales.
193
+ - **Integración con Tecnologías Emergentes Locales**: La colaboración con otros proyectos de innovación en la región puede acelerar el desarrollo de soluciones híbridas más efectivas.
194
+
195
+ 4. **Impacto Económico**:
196
+ - **Generación de Empleo**: El desarrollo de una IA nativa implica la creación de puestos de trabajo especializados en áreas como la inteligencia artificial, el aprendizaje automático y el desarrollo de software.
197
+ - **Ahorro de Divisas**: Dependiendo menos de soluciones extranjeras puede reducir la fuga de divisas, especialmente en países con restricciones cambiarias.
198
+ ```
199
+ ## References(s):
200
+
201
+ * TODO
202
+
203
+ ## Model Architecture:
204
+ **Architecture Type:** Transformer <br>
205
+ **Network Architecture:** Llama 3.1 <br>
206
+
207
+ ## Input:
208
+ **Input Type(s):** Text <br>
209
+ **Input Format:** String <br>
210
+ **Input Parameters:** One Dimensional (1D) <br>
211
+ **Other Properties Related to Input:** Max of 128k tokens<br>
212
+
213
+ ## Output:
214
+ **Output Type(s):** Text <br>
215
+ **Output Format:** String <br>
216
+ **Output Parameters:** One Dimensional (1D) <br>
217
+ **Other Properties Related to Output:** Max of 4k tokens <br>
218
+
219
+
220
+
221
+ # Training & Evaluation:
222
+ - TODO
223
+
224
+ # Dataset:
225
+
226
+ **MessIRve: A Large-Scale Spanish Information Retrieval Dataset** <br>
227
+ * [spanish/-ir/messirve](https://huggingface.co/datasets/spanish-ir/messirve) <br>
228
+
229
+
230
+
231
+ ## Citation
232
+
233
+ ```bibtex
234
+ @article{valentini2024messirve,
235
+ title={MessIRve: A Large-Scale Spanish Information Retrieval Dataset},
236
+ author={Francisco Valentini and Viviana Cotik and Damián Furman and Ivan Bercovich and Edgar Altszyler and Juan Manuel Pérez},
237
+ year={2024},
238
+ eprint={2409.05994},
239
+ journal={arxiv:2409.05994},
240
+ archivePrefix={arXiv},
241
+ primaryClass={cs.CL},
242
+ url={https://arxiv.org/abs/2409.05994},
243
+ }
244
+
245
+ @misc{wang2024helpsteer2preferencecomplementingratingspreferences,
246
+ title={HelpSteer2-Preference: Complementing Ratings with Preferences},
247
+ author={Zhilin Wang and Alexander Bukharin and Olivier Delalleau and Daniel Egert and Gerald Shen and Jiaqi Zeng and Oleksii Kuchaiev and Yi Dong},
248
+ year={2024},
249
+ eprint={2410.01257},
250
+ archivePrefix={arXiv},
251
+ primaryClass={cs.LG},
252
+ url={https://arxiv.org/abs/2410.01257},
253
+ }
254
+ ```