whisper-medium-dv / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
1cce8f4
|
raw
history blame
2.25 kB
metadata
language:
  - dv
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: whisper-medium-dv
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 dv
          type: mozilla-foundation/common_voice_13_0
          config: dv
          split: test
          args: dv
        metrics:
          - type: wer
            value: 8.957818965817019
            name: Wer

whisper-medium-dv

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_13_0 dv dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2998
  • Wer: 8.9578

To reproduce this run, execute the command in run.sh. Note that you will require the DeepSpeed package, which can be pip installed with:

pip install --upgrade deepspeed

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0349 3.58 1000 0.1622 9.9437
0.0046 7.17 2000 0.2288 9.5090
0.0007 10.75 3000 0.2820 9.0952
0.0 14.34 4000 0.2998 8.9578

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1.dev0
  • Tokenizers 0.13.3