sanchit-gandhi commited on
Commit
a3afa16
·
verified ·
1 Parent(s): 5fc4b30

Upload folder using huggingface_hub

Browse files

Uploading initialised weights and configs

config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 6,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.40.0.dev0",
24
+ "use_cache": true,
25
+ "vocab_size": 32000
26
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.40.0.dev0"
6
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80b7693526adafb752e3c2ce80ff926a48b241c822c77a6bcb5783aefd3c85e4
3
+ size 4987196936
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f06b5e37485246a87b6b0f180265cba5d6797760e662d59d1370ff85fff74a8
3
+ size 1296089984
model.safetensors.index.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6283280384
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00002.safetensors",
54
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
55
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
56
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
57
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
58
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
60
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.norm.weight": "model-00002-of-00002.safetensors"
63
+ }
64
+ }
run.sh ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ #SBATCH --partition=hopper-cpu
4
+ #SBATCH --name=mistral-init
5
+ #SBATCH --mem=1g
6
+ #SBATCH --time=1:00:00
7
+ #SBATCH --cpus-per-task=1
8
+ #SBATCH --mem-per-cpu=1
9
+ #SBATCH -o /fsx/sanchit/logs/init-%j-%x.out
10
+
11
+ echo "Starting job"
12
+ srun python3 run_initialization.py \
13
+ --model_name_or_path "mistralai/Mistral-7B-Instruct-v0.2" \
14
+ --num_hidden_layers "6" \
15
+ --initialization_strategy "first_n" \
16
+ --output_dir "./" \
17
+ --push_to_hub
18
+ wait
19
+
run_initialisation.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import logging
3
+ import os
4
+ import sys
5
+ from dataclasses import dataclass, field
6
+ from pathlib import Path
7
+ from typing import Optional
8
+
9
+ import numpy as np
10
+ import torch
11
+ from huggingface_hub import create_repo, get_full_repo_name, upload_folder
12
+ from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
13
+
14
+
15
+ logger = logging.getLogger(__name__)
16
+
17
+
18
+ @dataclass
19
+ class ModelArguments:
20
+ """
21
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
22
+ """
23
+
24
+ model_name_or_path: Optional[str] = field(
25
+ metadata={"help": "The teacher checkpoint for weights initialization"},
26
+ )
27
+ output_dir: str = field(
28
+ metadata={"help": "The output directory where the student checkpoint will be written."},
29
+ )
30
+ model_revision: Optional[str] = field(
31
+ default="main",
32
+ metadata={"help": "The specific teacher model version to use (can be a branch name, tag name or commit id)."},
33
+ )
34
+ cache_dir: Optional[str] = field(
35
+ default=None,
36
+ metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co"},
37
+ )
38
+ subfolder: Optional[str] = field(
39
+ default="",
40
+ metadata={
41
+ "help": "In case the relevant files are located inside a subfolder of the teacher model repo on huggingface.co, you can"
42
+ "specify the folder name here."
43
+ },
44
+ )
45
+ torch_dtype: Optional[str] = field(
46
+ default=None,
47
+ metadata={
48
+ "help": (
49
+ "Override the default `torch.dtype` and load the teacher model under this dtype. If `auto` is passed, the "
50
+ "dtype will be automatically derived from the model's weights."
51
+ ),
52
+ "choices": ["auto", "bfloat16", "float16", "float32"],
53
+ },
54
+ )
55
+ trust_remote_code: Optional[bool] = field(
56
+ default=False, metadata={"help": "Trust remote code when loading a model."}
57
+ )
58
+ token: Optional[bool] = field(
59
+ default=True,
60
+ metadata={
61
+ "help": "Will use the token generated when running `transformers-cli login` necessary to use this script with private models)."
62
+ },
63
+ )
64
+ num_hidden_layers: Optional[int] = field(
65
+ default=6,
66
+ metadata={"help": "The number of hidden layers in the Transformer decoder."},
67
+ )
68
+ push_to_hub: Optional[bool] = field(
69
+ default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
70
+ )
71
+ hub_model_id: Optional[str] = field(
72
+ default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
73
+ )
74
+ low_cpu_mem_usage: Optional[bool] = field(
75
+ default=True,
76
+ metadata={
77
+ "help": "Create the teacher model as an empty shell, and only materialize its parameters when the pretrained weights are loaded. "
78
+ "Significantly benefits loading time and RAM consumption."
79
+ },
80
+ )
81
+ initialization_strategy: Optional[str] = field(
82
+ default="maximally_spaced",
83
+ metadata={
84
+ "help": "The weight initialization strategy for the decoder weights. Either `first_n`, or `maximally_spaced`."
85
+ },
86
+ )
87
+
88
+
89
+ def main():
90
+ # 1. Parse input arguments
91
+ parser = HfArgumentParser(ModelArguments)
92
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
93
+ # If we pass only one argument to the script and it's the path to a json file,
94
+ # let's parse it to get our arguments.
95
+ model_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0]
96
+ else:
97
+ model_args = parser.parse_args_into_dataclasses()[0]
98
+
99
+ logger.info(f"Model parameters {model_args}")
100
+
101
+ logger.info("*** Load pretrained teacher model ***")
102
+ torch_dtype = (
103
+ model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
104
+ )
105
+ # quantization_config = get_quantization_config(model_args)
106
+
107
+ teacher_model = AutoModelForCausalLM.from_pretrained(
108
+ model_args.model_name_or_path,
109
+ torch_dtype=torch_dtype,
110
+ low_cpu_mem_usage=model_args.low_cpu_mem_usage,
111
+ revision=model_args.model_revision,
112
+ cache_dir=model_args.cache_dir,
113
+ subfolder=model_args.subfolder,
114
+ trust_remote_code=model_args.trust_remote_code,
115
+ token=model_args.token,
116
+ # device_map=get_kbit_device_map() if quantization_config is not None else None,
117
+ # quantization_config=quantization_config,
118
+ )
119
+ tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
120
+ generation_config = teacher_model.generation_config
121
+ teacher_config = teacher_model.config
122
+
123
+ logger.info("*** Teacher model loaded! ***")
124
+
125
+ student_config = copy.deepcopy(teacher_config)
126
+ student_config.num_hidden_layers = model_args.num_hidden_layers
127
+ teacher_hidden_layers = teacher_config.num_hidden_layers
128
+
129
+ if model_args.initialization_strategy == "maximally_spaced":
130
+ decoder_mapping = np.linspace(0, teacher_hidden_layers - 1, student_config.num_hidden_layers, dtype=int)
131
+ elif model_args.initialization_strategy == "first_n":
132
+ decoder_mapping = np.arange(0, student_config.num_hidden_layers)
133
+ else:
134
+ raise ValueError(
135
+ f"Got invalid initialization_strategy strategy '{model_args.initialization_strategy}', should be one of "
136
+ "'maximally_spaced` or `first_n`."
137
+ )
138
+ # always use the last teacher layer as the last student layer
139
+ decoder_mapping[-1] = teacher_hidden_layers - 1
140
+
141
+ decoder_map = {}
142
+ for student_layer, teacher_layer in enumerate(decoder_mapping):
143
+ decoder_map[teacher_layer] = student_layer
144
+
145
+ # init the student params from the teacher model
146
+ logger.info("*** Load and initialise student model ***")
147
+ student_model = AutoModelForCausalLM.from_config(student_config)
148
+ missing_keys, unexpected_keys = student_model.load_state_dict(teacher_model.state_dict(), strict=False)
149
+ student_model.to(dtype=torch_dtype)
150
+ if len(missing_keys) > 0:
151
+ raise RuntimeError(
152
+ f"Error(s) in loading state_dict for {student_model.__class__.__name__}. \n"
153
+ f"Missing key(s) in state_dict: {missing_keys}"
154
+ )
155
+ if student_config.num_hidden_layers == teacher_hidden_layers:
156
+ decoder_keys = [key for key in unexpected_keys if "model.layers" in key]
157
+ if len(decoder_keys) > 0:
158
+ raise RuntimeError(
159
+ f"Error(s) in loading state_dict for {student_model.__class__.__name__}. \n"
160
+ f"Unexpected key(s) in state_dict: {decoder_keys}"
161
+ )
162
+
163
+ for layer in range(teacher_hidden_layers):
164
+ if layer in decoder_map:
165
+ # re-introduce pre-defined layers from the teacher
166
+ student_model.model.layers[decoder_map[layer]].load_state_dict(
167
+ teacher_model.model.layers[layer].state_dict()
168
+ )
169
+
170
+ logger.info("*** Student model loaded! ***")
171
+
172
+ # remove the teacher params and model
173
+ del teacher_model
174
+
175
+ # save the converted weights and model
176
+ if model_args.output_dir is not None:
177
+ student_model.save_pretrained(model_args.output_dir)
178
+ # we also need to correctly save the processor and generation config
179
+ tokenizer.save_pretrained(model_args.output_dir)
180
+ generation_config.save_pretrained(model_args.output_dir)
181
+
182
+ if model_args.push_to_hub:
183
+ if model_args.hub_model_id is None:
184
+ repo_name = get_full_repo_name(
185
+ Path(model_args.output_dir).absolute().name,
186
+ token=model_args.token,
187
+ )
188
+ else:
189
+ repo_name = model_args.hub_model_id
190
+ create_repo(repo_name, exist_ok=True, token=model_args.token)
191
+ upload_folder(
192
+ repo_id=repo_name,
193
+ folder_path=model_args.output_dir,
194
+ commit_description="Uploading initialised weights and configs",
195
+ )
196
+
197
+
198
+ if __name__ == "__main__":
199
+ main()
200
+
run_initialization.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import logging
3
+ import os
4
+ import sys
5
+ from dataclasses import dataclass, field
6
+ from pathlib import Path
7
+ from typing import Optional
8
+
9
+ import numpy as np
10
+ import torch
11
+ from huggingface_hub import create_repo, get_full_repo_name, upload_folder
12
+ from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
13
+
14
+
15
+ logger = logging.getLogger(__name__)
16
+
17
+
18
+ @dataclass
19
+ class ModelArguments:
20
+ """
21
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
22
+ """
23
+
24
+ model_name_or_path: Optional[str] = field(
25
+ metadata={"help": "The teacher checkpoint for weights initialization"},
26
+ )
27
+ output_dir: str = field(
28
+ metadata={"help": "The output directory where the student checkpoint will be written."},
29
+ )
30
+ model_revision: Optional[str] = field(
31
+ default="main",
32
+ metadata={"help": "The specific teacher model version to use (can be a branch name, tag name or commit id)."},
33
+ )
34
+ cache_dir: Optional[str] = field(
35
+ default=None,
36
+ metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co"},
37
+ )
38
+ subfolder: Optional[str] = field(
39
+ default="",
40
+ metadata={
41
+ "help": "In case the relevant files are located inside a subfolder of the teacher model repo on huggingface.co, you can"
42
+ "specify the folder name here."
43
+ },
44
+ )
45
+ torch_dtype: Optional[str] = field(
46
+ default=None,
47
+ metadata={
48
+ "help": (
49
+ "Override the default `torch.dtype` and load the teacher model under this dtype. If `auto` is passed, the "
50
+ "dtype will be automatically derived from the model's weights."
51
+ ),
52
+ "choices": ["auto", "bfloat16", "float16", "float32"],
53
+ },
54
+ )
55
+ trust_remote_code: Optional[bool] = field(
56
+ default=False, metadata={"help": "Trust remote code when loading a model."}
57
+ )
58
+ token: Optional[bool] = field(
59
+ default=True,
60
+ metadata={
61
+ "help": "Will use the token generated when running `transformers-cli login` necessary to use this script with private models)."
62
+ },
63
+ )
64
+ num_hidden_layers: Optional[int] = field(
65
+ default=6,
66
+ metadata={"help": "The number of hidden layers in the Transformer decoder."},
67
+ )
68
+ push_to_hub: Optional[bool] = field(
69
+ default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
70
+ )
71
+ hub_model_id: Optional[str] = field(
72
+ default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
73
+ )
74
+ low_cpu_mem_usage: Optional[bool] = field(
75
+ default=True,
76
+ metadata={
77
+ "help": "Create the teacher model as an empty shell, and only materialize its parameters when the pretrained weights are loaded. "
78
+ "Significantly benefits loading time and RAM consumption."
79
+ },
80
+ )
81
+ initialization_strategy: Optional[str] = field(
82
+ default="maximally_spaced",
83
+ metadata={
84
+ "help": "The weight initialization strategy for the decoder weights. Either `first_n`, or `maximally_spaced`."
85
+ },
86
+ )
87
+
88
+
89
+ def main():
90
+ # 1. Parse input arguments
91
+ parser = HfArgumentParser(ModelArguments)
92
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
93
+ # If we pass only one argument to the script and it's the path to a json file,
94
+ # let's parse it to get our arguments.
95
+ model_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0]
96
+ else:
97
+ model_args = parser.parse_args_into_dataclasses()[0]
98
+
99
+ logger.info(f"Model parameters {model_args}")
100
+
101
+ logger.info("*** Load pretrained teacher model ***")
102
+ torch_dtype = (
103
+ model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
104
+ )
105
+ # quantization_config = get_quantization_config(model_args)
106
+
107
+ teacher_model = AutoModelForCausalLM.from_pretrained(
108
+ model_args.model_name_or_path,
109
+ torch_dtype=torch_dtype,
110
+ low_cpu_mem_usage=model_args.low_cpu_mem_usage,
111
+ revision=model_args.model_revision,
112
+ cache_dir=model_args.cache_dir,
113
+ subfolder=model_args.subfolder,
114
+ trust_remote_code=model_args.trust_remote_code,
115
+ token=model_args.token,
116
+ # device_map=get_kbit_device_map() if quantization_config is not None else None,
117
+ # quantization_config=quantization_config,
118
+ )
119
+ tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
120
+ generation_config = teacher_model.generation_config
121
+ teacher_config = teacher_model.config
122
+
123
+ logger.info("*** Teacher model loaded! ***")
124
+
125
+ student_config = copy.deepcopy(teacher_config)
126
+ student_config.num_hidden_layers = model_args.num_hidden_layers
127
+ teacher_hidden_layers = teacher_config.num_hidden_layers
128
+
129
+ if model_args.initialization_strategy == "maximally_spaced":
130
+ decoder_mapping = np.linspace(0, teacher_hidden_layers - 1, student_config.num_hidden_layers, dtype=int)
131
+ elif model_args.initialization_strategy == "first_n":
132
+ decoder_mapping = np.arange(0, student_config.num_hidden_layers)
133
+ else:
134
+ raise ValueError(
135
+ f"Got invalid initialization_strategy strategy '{model_args.initialization_strategy}', should be one of "
136
+ "'maximally_spaced` or `first_n`."
137
+ )
138
+ # always use the last teacher layer as the last student layer
139
+ decoder_mapping[-1] = teacher_hidden_layers - 1
140
+
141
+ decoder_map = {}
142
+ for student_layer, teacher_layer in enumerate(decoder_mapping):
143
+ decoder_map[teacher_layer] = student_layer
144
+
145
+ # init the student params from the teacher model
146
+ logger.info("*** Load and initialise student model ***")
147
+ student_model = AutoModelForCausalLM.from_config(student_config)
148
+ missing_keys, unexpected_keys = student_model.load_state_dict(teacher_model.state_dict(), strict=False)
149
+ student_model.to(dtype=torch_dtype)
150
+ if len(missing_keys) > 0:
151
+ raise RuntimeError(
152
+ f"Error(s) in loading state_dict for {student_model.__class__.__name__}. \n"
153
+ f"Missing key(s) in state_dict: {missing_keys}"
154
+ )
155
+ if student_config.num_hidden_layers == teacher_hidden_layers:
156
+ decoder_keys = [key for key in unexpected_keys if "model.layers" in key]
157
+ if len(decoder_keys) > 0:
158
+ raise RuntimeError(
159
+ f"Error(s) in loading state_dict for {student_model.__class__.__name__}. \n"
160
+ f"Unexpected key(s) in state_dict: {decoder_keys}"
161
+ )
162
+
163
+ for layer in range(teacher_hidden_layers):
164
+ if layer in decoder_map:
165
+ # re-introduce pre-defined layers from the teacher
166
+ student_model.model.layers[decoder_map[layer]].load_state_dict(
167
+ teacher_model.model.layers[layer].state_dict()
168
+ )
169
+
170
+ logger.info("*** Student model loaded! ***")
171
+
172
+ # remove the teacher params and model
173
+ del teacher_model
174
+
175
+ # save the converted weights and model
176
+ if model_args.output_dir is not None:
177
+ student_model.save_pretrained(model_args.output_dir)
178
+ # we also need to correctly save the processor and generation config
179
+ tokenizer.save_pretrained(model_args.output_dir)
180
+ generation_config.save_pretrained(model_args.output_dir)
181
+
182
+ if model_args.push_to_hub:
183
+ if model_args.hub_model_id is None:
184
+ repo_name = get_full_repo_name(
185
+ Path(model_args.output_dir).absolute().name,
186
+ token=model_args.token,
187
+ )
188
+ else:
189
+ repo_name = model_args.hub_model_id
190
+ create_repo(repo_name, exist_ok=True, token=model_args.token)
191
+ upload_folder(
192
+ repo_id=repo_name,
193
+ folder_path=model_args.output_dir,
194
+ commit_description="Uploading initialised weights and configs",
195
+ )
196
+
197
+
198
+ if __name__ == "__main__":
199
+ main()
200
+
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": null,
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }