|
--- |
|
base_model: samzirbo/mT5.en-es.pretrained |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: balanced |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# balanced |
|
|
|
This model is a fine-tuned version of [samzirbo/mT5.en-es.pretrained](https://huggingface.co/samzirbo/mT5.en-es.pretrained) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1748 |
|
- Bleu: 44.0446 |
|
- Meteor: 0.6916 |
|
- Chrf++: 62.8076 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 50000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Chrf++ | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:| |
|
| 4.3249 | 0.44 | 2500 | 2.0076 | 28.1155 | 0.5563 | 49.3185 | |
|
| 2.4089 | 0.88 | 5000 | 1.7085 | 33.4675 | 0.6049 | 54.1053 | |
|
| 2.1313 | 1.31 | 7500 | 1.5707 | 36.5102 | 0.6324 | 56.7478 | |
|
| 1.9952 | 1.75 | 10000 | 1.4745 | 38.023 | 0.6421 | 57.9508 | |
|
| 1.8897 | 2.19 | 12500 | 1.4185 | 39.0718 | 0.6512 | 58.9236 | |
|
| 1.8052 | 2.63 | 15000 | 1.3728 | 40.11 | 0.6593 | 59.6738 | |
|
| 1.7568 | 3.06 | 17500 | 1.3367 | 40.647 | 0.6648 | 60.0802 | |
|
| 1.6834 | 3.5 | 20000 | 1.3046 | 41.6093 | 0.6713 | 60.8373 | |
|
| 1.6584 | 3.94 | 22500 | 1.2721 | 41.9856 | 0.675 | 61.1498 | |
|
| 1.5942 | 4.38 | 25000 | 1.2509 | 42.4053 | 0.6807 | 61.6486 | |
|
| 1.5756 | 4.81 | 27500 | 1.2298 | 42.9706 | 0.6828 | 61.9567 | |
|
| 1.5408 | 5.25 | 30000 | 1.2189 | 43.2046 | 0.6825 | 62.0617 | |
|
| 1.5147 | 5.69 | 32500 | 1.2031 | 43.404 | 0.6859 | 62.2848 | |
|
| 1.4953 | 6.13 | 35000 | 1.1941 | 43.6281 | 0.6881 | 62.4345 | |
|
| 1.4689 | 6.56 | 37500 | 1.1847 | 43.8479 | 0.6889 | 62.5928 | |
|
| 1.4666 | 7.0 | 40000 | 1.1801 | 43.7555 | 0.6902 | 62.5955 | |
|
| 1.4424 | 7.44 | 42500 | 1.1770 | 43.8281 | 0.6902 | 62.6384 | |
|
| 1.4415 | 7.88 | 45000 | 1.1743 | 43.9782 | 0.6912 | 62.751 | |
|
| 1.4347 | 8.31 | 47500 | 1.1751 | 44.0103 | 0.6919 | 62.7896 | |
|
| 1.4309 | 8.75 | 50000 | 1.1748 | 44.0446 | 0.6916 | 62.8076 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.15.2 |
|
|