bol20162021
commited on
Commit
•
216215c
1
Parent(s):
ee261dd
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
inference:
|
4 |
+
parameters:
|
5 |
+
do_sample: false
|
6 |
+
max_length: 200
|
7 |
+
widget:
|
8 |
+
- text: "CREATE TABLE stadium (\n stadium_id number,\n location text,\n name text,\n capacity number,\n)\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many stadiums in total?\n\nSELECT"
|
9 |
+
example_title: "Number stadiums"
|
10 |
+
- text: "CREATE TABLE work_orders ( ID NUMBER, CREATED_AT TEXT, COST FLOAT, INVOICE_AMOUNT FLOAT, IS_DUE BOOLEAN, IS_OPEN BOOLEAN, IS_OVERDUE BOOLEAN, COUNTRY_NAME TEXT, )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many work orders are open?\n\nSELECT"
|
11 |
+
example_title: "Open work orders"
|
12 |
+
- text: "CREATE TABLE stadium ( stadium_id number, location text, name text, capacity number, highest number, lowest number, average number )\n\nCREATE TABLE singer ( singer_id number, name text, country text, song_name text, song_release_year text, age number, is_male others )\n\nCREATE TABLE concert ( concert_id number, concert_name text, theme text, stadium_id text, year text )\n\nCREATE TABLE singer_in_concert ( concert_id number, singer_id text )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- What is the maximum, the average, and the minimum capacity of stadiums ?\n\nSELECT"
|
13 |
+
example_title: "Stadium capacity"
|
14 |
+
---
|
15 |
+
|
16 |
+
# NSQL-Llama-2-70B
|
17 |
+
|
18 |
+
## Model Description
|
19 |
+
|
20 |
+
NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks.
|
21 |
+
|
22 |
+
In this repository we are introducing a new member of NSQL, NSQL-Llama-2-70B. It's based on Meta's original [Llama-2 70B model](https://huggingface.co/meta-llama/Llama-2-70b) and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of text-to-SQL pairs.
|
23 |
+
|
24 |
+
### Basic Information
|
25 |
+
|
26 |
+
<!-- Provide the basic links for the model. -->
|
27 |
+
- **Blog Post**: [Link](TBA)
|
28 |
+
- **Discord**: [Link](TBA)
|
29 |
+
- **HF Hosting**: [Chat with me!](TBA)
|
30 |
+
|
31 |
+
## Training Data
|
32 |
+
|
33 |
+
The general SQL queries are the SQL subset from [The Stack](https://huggingface.co/datasets/bigcode/the-stack), containing 1M training samples. The labeled text-to-SQL pairs come from the NSText2SQL dataset (https://huggingface.co/datasets/NumbersStation/NSText2SQL).
|
34 |
+
|
35 |
+
## Evaluation Data
|
36 |
+
|
37 |
+
We evaluate our models on three text-to-SQL benchmarks: Spider, Bird, and text2sql.
|
38 |
+
|
39 |
+
## Training Procedure
|
40 |
+
|
41 |
+
NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using SambaNova's in-house Reconfigurable Dataflow Unit (RDU), leveraging data and model parallelism. We pre-trained for 2 epochs and fine-tuned for 10 epochs.
|
42 |
+
|
43 |
+
## Intended Use and Limitations
|
44 |
+
|
45 |
+
The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputting `SELECT` queries.
|
46 |
+
|
47 |
+
## How to Use
|
48 |
+
|
49 |
+
Example 1:
|
50 |
+
|
51 |
+
```python
|
52 |
+
import torch
|
53 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/nsql-Llama-2-70B")
|
55 |
+
model = AutoModelForCausalLM.from_pretrained("sambanovasystems/nsql-Llama-2-70B", torch_dtype=torch.bfloat16)
|
56 |
+
|
57 |
+
```
|