metadata
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: safety-utcustom-train-SF-RGB-b0
results: []
safety-utcustom-train-SF-RGB-b0
This model is a fine-tuned version of nvidia/mit-b0 on the sam1120/safety-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:
- Loss: 0.3221
- Mean Iou: 0.7557
- Mean Accuracy: 0.8092
- Overall Accuracy: 0.9835
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.6240
- Accuracy Unsafe: 0.9945
- Iou Unlabeled: nan
- Iou Safe: 0.5281
- Iou Unsafe: 0.9832
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Safe | Accuracy Unsafe | Iou Unlabeled | Iou Safe | Iou Unsafe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.2069 | 1.0 | 10 | 1.1287 | 0.0406 | 0.3613 | 0.1117 | nan | 0.6267 | 0.0960 | 0.0 | 0.0261 | 0.0958 |
1.196 | 2.0 | 20 | 1.1408 | 0.0465 | 0.3971 | 0.1274 | nan | 0.6837 | 0.1105 | 0.0 | 0.0290 | 0.1104 |
1.1866 | 3.0 | 30 | 1.1441 | 0.0662 | 0.4586 | 0.1826 | nan | 0.7519 | 0.1653 | 0.0 | 0.0335 | 0.1652 |
1.1701 | 4.0 | 40 | 1.1350 | 0.1016 | 0.5469 | 0.2805 | nan | 0.8301 | 0.2638 | 0.0 | 0.0410 | 0.2637 |
1.1467 | 5.0 | 50 | 1.1285 | 0.1325 | 0.6266 | 0.3646 | nan | 0.9052 | 0.3481 | 0.0 | 0.0496 | 0.3481 |
1.1126 | 6.0 | 60 | 1.0914 | 0.1933 | 0.7318 | 0.5257 | nan | 0.9508 | 0.5128 | 0.0 | 0.0673 | 0.5127 |
1.0735 | 7.0 | 70 | 1.0392 | 0.2462 | 0.8075 | 0.6582 | nan | 0.9662 | 0.6489 | 0.0 | 0.0900 | 0.6487 |
1.0335 | 8.0 | 80 | 1.0015 | 0.2783 | 0.8456 | 0.7301 | nan | 0.9683 | 0.7228 | 0.0 | 0.1122 | 0.7226 |
1.0088 | 9.0 | 90 | 0.9502 | 0.3061 | 0.8736 | 0.7884 | nan | 0.9643 | 0.7830 | 0.0 | 0.1359 | 0.7825 |
0.9993 | 10.0 | 100 | 0.9158 | 0.3246 | 0.8886 | 0.8232 | nan | 0.9581 | 0.8191 | 0.0 | 0.1556 | 0.8183 |
0.9114 | 11.0 | 110 | 0.8472 | 0.3562 | 0.9061 | 0.8732 | nan | 0.9411 | 0.8711 | 0.0 | 0.1990 | 0.8697 |
0.9027 | 12.0 | 120 | 0.8073 | 0.3687 | 0.9085 | 0.8909 | nan | 0.9271 | 0.8898 | 0.0 | 0.2182 | 0.8881 |
0.8775 | 13.0 | 130 | 0.7756 | 0.3819 | 0.9011 | 0.9086 | nan | 0.8931 | 0.9090 | 0.0 | 0.2394 | 0.9062 |
0.8532 | 14.0 | 140 | 0.7544 | 0.3883 | 0.9005 | 0.9156 | nan | 0.8844 | 0.9166 | 0.0 | 0.2513 | 0.9135 |
0.7509 | 15.0 | 150 | 0.7137 | 0.4039 | 0.8965 | 0.9311 | nan | 0.8597 | 0.9333 | 0.0 | 0.2824 | 0.9294 |
0.7711 | 16.0 | 160 | 0.6837 | 0.4131 | 0.8959 | 0.9394 | nan | 0.8497 | 0.9422 | 0.0 | 0.3014 | 0.9379 |
0.7163 | 17.0 | 170 | 0.6573 | 0.4230 | 0.8859 | 0.9467 | nan | 0.8212 | 0.9505 | 0.0 | 0.3234 | 0.9454 |
0.6609 | 18.0 | 180 | 0.6698 | 0.4200 | 0.8889 | 0.9449 | nan | 0.8294 | 0.9484 | 0.0 | 0.3163 | 0.9436 |
0.7237 | 19.0 | 190 | 0.6465 | 0.4236 | 0.8821 | 0.9479 | nan | 0.8121 | 0.9520 | 0.0 | 0.3241 | 0.9467 |
0.6264 | 20.0 | 200 | 0.6300 | 0.4293 | 0.8776 | 0.9520 | nan | 0.7985 | 0.9566 | 0.0 | 0.3372 | 0.9508 |
0.6711 | 21.0 | 210 | 0.6050 | 0.4391 | 0.8731 | 0.9576 | nan | 0.7833 | 0.9630 | 0.0 | 0.3605 | 0.9567 |
0.626 | 22.0 | 220 | 0.5855 | 0.4409 | 0.8742 | 0.9585 | nan | 0.7846 | 0.9637 | 0.0 | 0.3653 | 0.9575 |
0.6103 | 23.0 | 230 | 0.5651 | 0.4474 | 0.8671 | 0.9623 | nan | 0.7658 | 0.9683 | 0.0 | 0.3807 | 0.9615 |
0.6462 | 24.0 | 240 | 0.5621 | 0.4489 | 0.8643 | 0.9631 | nan | 0.7592 | 0.9693 | 0.0 | 0.3844 | 0.9623 |
0.5442 | 25.0 | 250 | 0.5460 | 0.4563 | 0.8592 | 0.9668 | nan | 0.7450 | 0.9735 | 0.0 | 0.4028 | 0.9660 |
0.6764 | 26.0 | 260 | 0.5673 | 0.4544 | 0.8646 | 0.9657 | nan | 0.7571 | 0.9721 | 0.0 | 0.3983 | 0.9650 |
0.6471 | 27.0 | 270 | 0.5412 | 0.4586 | 0.8561 | 0.9679 | nan | 0.7374 | 0.9749 | 0.0 | 0.4087 | 0.9672 |
0.5589 | 28.0 | 280 | 0.5427 | 0.4573 | 0.8601 | 0.9671 | nan | 0.7465 | 0.9738 | 0.0 | 0.4057 | 0.9663 |
0.6512 | 29.0 | 290 | 0.5264 | 0.4600 | 0.8567 | 0.9681 | nan | 0.7384 | 0.9751 | 0.0 | 0.4126 | 0.9674 |
0.6146 | 30.0 | 300 | 0.5321 | 0.4616 | 0.8619 | 0.9688 | nan | 0.7482 | 0.9755 | 0.0 | 0.4167 | 0.9681 |
0.4938 | 31.0 | 310 | 0.5025 | 0.4751 | 0.8475 | 0.9744 | nan | 0.7127 | 0.9823 | 0.0 | 0.4515 | 0.9738 |
0.4868 | 32.0 | 320 | 0.4836 | 0.4781 | 0.8342 | 0.9761 | nan | 0.6833 | 0.9851 | 0.0 | 0.4586 | 0.9756 |
0.6315 | 33.0 | 330 | 0.4918 | 0.4739 | 0.8479 | 0.9740 | nan | 0.7139 | 0.9819 | 0.0 | 0.4483 | 0.9735 |
0.5529 | 34.0 | 340 | 0.4879 | 0.4753 | 0.8414 | 0.9749 | nan | 0.6995 | 0.9832 | 0.0 | 0.4516 | 0.9743 |
0.4592 | 35.0 | 350 | 0.4826 | 0.4764 | 0.8364 | 0.9754 | nan | 0.6887 | 0.9842 | 0.0 | 0.4542 | 0.9749 |
0.5904 | 36.0 | 360 | 0.4611 | 0.4859 | 0.8159 | 0.9793 | nan | 0.6423 | 0.9896 | 0.0 | 0.4789 | 0.9789 |
0.4804 | 37.0 | 370 | 0.4654 | 0.4796 | 0.8359 | 0.9764 | nan | 0.6865 | 0.9853 | 0.0 | 0.4627 | 0.9760 |
0.4701 | 38.0 | 380 | 0.4625 | 0.4846 | 0.8251 | 0.9784 | nan | 0.6623 | 0.9880 | 0.0 | 0.4758 | 0.9779 |
0.4729 | 39.0 | 390 | 0.4536 | 0.4838 | 0.8231 | 0.9783 | nan | 0.6582 | 0.9881 | 0.0 | 0.4736 | 0.9779 |
0.4219 | 40.0 | 400 | 0.4514 | 0.4838 | 0.8305 | 0.9779 | nan | 0.6738 | 0.9872 | 0.0 | 0.4739 | 0.9775 |
0.6494 | 41.0 | 410 | 0.4425 | 0.4892 | 0.8162 | 0.9801 | nan | 0.6420 | 0.9904 | 0.0 | 0.4878 | 0.9797 |
0.4616 | 42.0 | 420 | 0.4390 | 0.7316 | 0.8225 | 0.9794 | nan | 0.6558 | 0.9892 | nan | 0.4842 | 0.9790 |
0.4408 | 43.0 | 430 | 0.4419 | 0.7358 | 0.8272 | 0.9797 | nan | 0.6652 | 0.9893 | nan | 0.4923 | 0.9793 |
0.4532 | 44.0 | 440 | 0.4371 | 0.7375 | 0.8274 | 0.9800 | nan | 0.6651 | 0.9896 | nan | 0.4954 | 0.9796 |
0.5015 | 45.0 | 450 | 0.4376 | 0.7364 | 0.8276 | 0.9798 | nan | 0.6659 | 0.9894 | nan | 0.4933 | 0.9794 |
0.4965 | 46.0 | 460 | 0.4201 | 0.7405 | 0.8137 | 0.9812 | nan | 0.6357 | 0.9918 | nan | 0.5002 | 0.9809 |
0.4837 | 47.0 | 470 | 0.4281 | 0.7378 | 0.8279 | 0.9800 | nan | 0.6662 | 0.9896 | nan | 0.4961 | 0.9796 |
0.4221 | 48.0 | 480 | 0.4288 | 0.7371 | 0.8227 | 0.9802 | nan | 0.6553 | 0.9901 | nan | 0.4944 | 0.9798 |
0.4491 | 49.0 | 490 | 0.4152 | 0.7371 | 0.8074 | 0.9811 | nan | 0.6228 | 0.9920 | nan | 0.4935 | 0.9808 |
0.4121 | 50.0 | 500 | 0.4159 | 0.7367 | 0.8063 | 0.9811 | nan | 0.6205 | 0.9921 | nan | 0.4927 | 0.9808 |
0.4727 | 51.0 | 510 | 0.4199 | 0.7354 | 0.8095 | 0.9807 | nan | 0.6274 | 0.9915 | nan | 0.4905 | 0.9804 |
0.5323 | 52.0 | 520 | 0.4079 | 0.7383 | 0.8074 | 0.9813 | nan | 0.6227 | 0.9922 | nan | 0.4957 | 0.9809 |
0.409 | 53.0 | 530 | 0.4103 | 0.7392 | 0.8161 | 0.9809 | nan | 0.6409 | 0.9913 | nan | 0.4978 | 0.9805 |
0.6391 | 54.0 | 540 | 0.4063 | 0.7406 | 0.8133 | 0.9813 | nan | 0.6349 | 0.9918 | nan | 0.5003 | 0.9809 |
0.3905 | 55.0 | 550 | 0.4000 | 0.7409 | 0.8122 | 0.9814 | nan | 0.6325 | 0.9920 | nan | 0.5007 | 0.9810 |
0.4138 | 56.0 | 560 | 0.4028 | 0.7398 | 0.8183 | 0.9809 | nan | 0.6455 | 0.9911 | nan | 0.4990 | 0.9805 |
0.3977 | 57.0 | 570 | 0.3865 | 0.7372 | 0.7912 | 0.9821 | nan | 0.5884 | 0.9941 | nan | 0.4926 | 0.9818 |
0.4186 | 58.0 | 580 | 0.3845 | 0.7416 | 0.7994 | 0.9822 | nan | 0.6050 | 0.9937 | nan | 0.5014 | 0.9819 |
0.4921 | 59.0 | 590 | 0.3881 | 0.7427 | 0.8102 | 0.9817 | nan | 0.6278 | 0.9925 | nan | 0.5039 | 0.9814 |
0.3953 | 60.0 | 600 | 0.3823 | 0.7429 | 0.8027 | 0.9822 | nan | 0.6119 | 0.9935 | nan | 0.5039 | 0.9819 |
0.4263 | 61.0 | 610 | 0.3841 | 0.7420 | 0.8075 | 0.9818 | nan | 0.6222 | 0.9928 | nan | 0.5026 | 0.9815 |
0.3798 | 62.0 | 620 | 0.3763 | 0.7446 | 0.8054 | 0.9823 | nan | 0.6174 | 0.9934 | nan | 0.5072 | 0.9820 |
0.4208 | 63.0 | 630 | 0.3724 | 0.7437 | 0.7919 | 0.9829 | nan | 0.5888 | 0.9949 | nan | 0.5047 | 0.9826 |
0.3627 | 64.0 | 640 | 0.3760 | 0.7466 | 0.8111 | 0.9822 | nan | 0.6292 | 0.9930 | nan | 0.5112 | 0.9819 |
0.4156 | 65.0 | 650 | 0.3669 | 0.7478 | 0.8018 | 0.9829 | nan | 0.6092 | 0.9943 | nan | 0.5130 | 0.9826 |
0.468 | 66.0 | 660 | 0.3706 | 0.7508 | 0.8145 | 0.9826 | nan | 0.6359 | 0.9932 | nan | 0.5193 | 0.9823 |
0.4547 | 67.0 | 670 | 0.3692 | 0.7512 | 0.8189 | 0.9824 | nan | 0.6451 | 0.9927 | nan | 0.5204 | 0.9821 |
0.3604 | 68.0 | 680 | 0.3691 | 0.7520 | 0.8152 | 0.9827 | nan | 0.6371 | 0.9933 | nan | 0.5215 | 0.9824 |
0.4476 | 69.0 | 690 | 0.3679 | 0.7516 | 0.8195 | 0.9825 | nan | 0.6463 | 0.9927 | nan | 0.5210 | 0.9821 |
0.3535 | 70.0 | 700 | 0.3589 | 0.7522 | 0.8097 | 0.9831 | nan | 0.6255 | 0.9939 | nan | 0.5217 | 0.9827 |
0.3539 | 71.0 | 710 | 0.3572 | 0.7526 | 0.8091 | 0.9831 | nan | 0.6242 | 0.9941 | nan | 0.5224 | 0.9828 |
0.3675 | 72.0 | 720 | 0.3589 | 0.7518 | 0.8100 | 0.9830 | nan | 0.6261 | 0.9939 | nan | 0.5209 | 0.9827 |
0.4148 | 73.0 | 730 | 0.3536 | 0.7504 | 0.8093 | 0.9828 | nan | 0.6249 | 0.9937 | nan | 0.5182 | 0.9825 |
0.3941 | 74.0 | 740 | 0.3538 | 0.7497 | 0.8099 | 0.9827 | nan | 0.6263 | 0.9936 | nan | 0.5169 | 0.9824 |
0.4264 | 75.0 | 750 | 0.3595 | 0.7469 | 0.8197 | 0.9818 | nan | 0.6473 | 0.9920 | nan | 0.5123 | 0.9814 |
0.3815 | 76.0 | 760 | 0.3525 | 0.7492 | 0.8097 | 0.9827 | nan | 0.6258 | 0.9935 | nan | 0.5162 | 0.9823 |
0.3459 | 77.0 | 770 | 0.3443 | 0.7452 | 0.7926 | 0.9831 | nan | 0.5901 | 0.9951 | nan | 0.5076 | 0.9828 |
0.3794 | 78.0 | 780 | 0.3538 | 0.7501 | 0.8154 | 0.9825 | nan | 0.6377 | 0.9930 | nan | 0.5180 | 0.9821 |
0.3761 | 79.0 | 790 | 0.3525 | 0.7483 | 0.8169 | 0.9821 | nan | 0.6412 | 0.9925 | nan | 0.5147 | 0.9818 |
0.3612 | 80.0 | 800 | 0.3495 | 0.7513 | 0.8128 | 0.9828 | nan | 0.6321 | 0.9934 | nan | 0.5201 | 0.9824 |
0.405 | 81.0 | 810 | 0.3466 | 0.7502 | 0.8148 | 0.9825 | nan | 0.6365 | 0.9931 | nan | 0.5182 | 0.9822 |
0.4289 | 82.0 | 820 | 0.3458 | 0.7498 | 0.8092 | 0.9828 | nan | 0.6247 | 0.9937 | nan | 0.5171 | 0.9824 |
0.3523 | 83.0 | 830 | 0.3435 | 0.7503 | 0.8112 | 0.9827 | nan | 0.6288 | 0.9935 | nan | 0.5183 | 0.9824 |
0.4254 | 84.0 | 840 | 0.3403 | 0.7495 | 0.8000 | 0.9832 | nan | 0.6052 | 0.9947 | nan | 0.5160 | 0.9829 |
0.3399 | 85.0 | 850 | 0.3355 | 0.7492 | 0.8003 | 0.9832 | nan | 0.6059 | 0.9947 | nan | 0.5155 | 0.9829 |
0.3251 | 86.0 | 860 | 0.3395 | 0.7503 | 0.8028 | 0.9832 | nan | 0.6111 | 0.9945 | nan | 0.5178 | 0.9829 |
0.3748 | 87.0 | 870 | 0.3400 | 0.7502 | 0.8117 | 0.9827 | nan | 0.6299 | 0.9934 | nan | 0.5181 | 0.9824 |
0.4398 | 88.0 | 880 | 0.3450 | 0.7527 | 0.8197 | 0.9826 | nan | 0.6466 | 0.9928 | nan | 0.5231 | 0.9822 |
0.3782 | 89.0 | 890 | 0.3454 | 0.7547 | 0.8180 | 0.9829 | nan | 0.6426 | 0.9933 | nan | 0.5268 | 0.9826 |
0.4318 | 90.0 | 900 | 0.3424 | 0.7541 | 0.8162 | 0.9830 | nan | 0.6390 | 0.9934 | nan | 0.5255 | 0.9826 |
0.3428 | 91.0 | 910 | 0.3327 | 0.7541 | 0.8124 | 0.9832 | nan | 0.6309 | 0.9939 | nan | 0.5253 | 0.9828 |
0.4303 | 92.0 | 920 | 0.3364 | 0.7525 | 0.8108 | 0.9830 | nan | 0.6277 | 0.9939 | nan | 0.5223 | 0.9827 |
0.3624 | 93.0 | 930 | 0.3277 | 0.7531 | 0.8063 | 0.9834 | nan | 0.6182 | 0.9945 | nan | 0.5231 | 0.9830 |
0.3418 | 94.0 | 940 | 0.3315 | 0.7548 | 0.8125 | 0.9833 | nan | 0.6311 | 0.9940 | nan | 0.5267 | 0.9829 |
0.321 | 95.0 | 950 | 0.3266 | 0.7541 | 0.8070 | 0.9835 | nan | 0.6195 | 0.9945 | nan | 0.5251 | 0.9831 |
0.3152 | 96.0 | 960 | 0.3265 | 0.7531 | 0.8025 | 0.9836 | nan | 0.6101 | 0.9949 | nan | 0.5230 | 0.9833 |
0.3153 | 97.0 | 970 | 0.3263 | 0.7537 | 0.8048 | 0.9835 | nan | 0.6149 | 0.9947 | nan | 0.5243 | 0.9832 |
0.3158 | 98.0 | 980 | 0.3299 | 0.7553 | 0.8139 | 0.9832 | nan | 0.6340 | 0.9939 | nan | 0.5278 | 0.9829 |
0.3162 | 99.0 | 990 | 0.3248 | 0.7546 | 0.8076 | 0.9835 | nan | 0.6207 | 0.9945 | nan | 0.5260 | 0.9832 |
0.3748 | 100.0 | 1000 | 0.3238 | 0.7553 | 0.8077 | 0.9836 | nan | 0.6208 | 0.9946 | nan | 0.5274 | 0.9833 |
0.3598 | 101.0 | 1010 | 0.3221 | 0.7544 | 0.8096 | 0.9833 | nan | 0.6250 | 0.9943 | nan | 0.5257 | 0.9830 |
0.3245 | 102.0 | 1020 | 0.3247 | 0.7527 | 0.8156 | 0.9828 | nan | 0.6380 | 0.9933 | nan | 0.5228 | 0.9825 |
0.3527 | 103.0 | 1030 | 0.3275 | 0.7537 | 0.8193 | 0.9827 | nan | 0.6456 | 0.9930 | nan | 0.5250 | 0.9824 |
0.5087 | 104.0 | 1040 | 0.3221 | 0.7559 | 0.8105 | 0.9835 | nan | 0.6266 | 0.9944 | nan | 0.5287 | 0.9832 |
0.3331 | 105.0 | 1050 | 0.3183 | 0.7560 | 0.8064 | 0.9837 | nan | 0.6180 | 0.9948 | nan | 0.5285 | 0.9834 |
0.324 | 106.0 | 1060 | 0.3198 | 0.7561 | 0.8090 | 0.9836 | nan | 0.6235 | 0.9946 | nan | 0.5289 | 0.9833 |
0.3512 | 107.0 | 1070 | 0.3194 | 0.7549 | 0.8052 | 0.9836 | nan | 0.6155 | 0.9949 | nan | 0.5265 | 0.9833 |
0.3274 | 108.0 | 1080 | 0.3185 | 0.7569 | 0.8122 | 0.9835 | nan | 0.6301 | 0.9943 | nan | 0.5306 | 0.9832 |
0.335 | 109.0 | 1090 | 0.3177 | 0.7554 | 0.8081 | 0.9836 | nan | 0.6217 | 0.9946 | nan | 0.5276 | 0.9832 |
0.3581 | 110.0 | 1100 | 0.3204 | 0.7568 | 0.8146 | 0.9834 | nan | 0.6352 | 0.9940 | nan | 0.5306 | 0.9831 |
0.3307 | 111.0 | 1110 | 0.3216 | 0.7571 | 0.8138 | 0.9835 | nan | 0.6335 | 0.9941 | nan | 0.5310 | 0.9832 |
0.3162 | 112.0 | 1120 | 0.3227 | 0.7575 | 0.8181 | 0.9833 | nan | 0.6425 | 0.9937 | nan | 0.5320 | 0.9830 |
0.3687 | 113.0 | 1130 | 0.3188 | 0.7567 | 0.8124 | 0.9835 | nan | 0.6306 | 0.9942 | nan | 0.5302 | 0.9832 |
0.4099 | 114.0 | 1140 | 0.3151 | 0.7550 | 0.8063 | 0.9836 | nan | 0.6178 | 0.9947 | nan | 0.5266 | 0.9833 |
0.3283 | 115.0 | 1150 | 0.3152 | 0.7557 | 0.8088 | 0.9836 | nan | 0.6232 | 0.9945 | nan | 0.5281 | 0.9832 |
0.3118 | 116.0 | 1160 | 0.3180 | 0.7556 | 0.8097 | 0.9835 | nan | 0.6249 | 0.9944 | nan | 0.5280 | 0.9832 |
0.3233 | 117.0 | 1170 | 0.3164 | 0.7551 | 0.8070 | 0.9836 | nan | 0.6192 | 0.9947 | nan | 0.5269 | 0.9833 |
0.3401 | 118.0 | 1180 | 0.3192 | 0.7562 | 0.8122 | 0.9834 | nan | 0.6303 | 0.9942 | nan | 0.5292 | 0.9831 |
0.3867 | 119.0 | 1190 | 0.3199 | 0.7566 | 0.8160 | 0.9833 | nan | 0.6382 | 0.9938 | nan | 0.5302 | 0.9830 |
0.3217 | 120.0 | 1200 | 0.3221 | 0.7557 | 0.8092 | 0.9835 | nan | 0.6240 | 0.9945 | nan | 0.5281 | 0.9832 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3