salohnana2018's picture
update model card README.md
91128c9
|
raw
history blame
1.73 kB
---
base_model: UBC-NLP/MARBERTv2
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: OTE-NoDapt-ABSA-bert-base-MARBERTv2-DefultHp-FineTune
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# OTE-NoDapt-ABSA-bert-base-MARBERTv2-DefultHp-FineTune
This model is a fine-tuned version of [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6006
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 25
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| 0.758 | 1.0 | 121 | 0.6913 | 0.0 | 0.0 | 0.0 | 0.8892 |
| 0.6556 | 2.0 | 242 | 0.6214 | 0.0 | 0.0 | 0.0 | 0.8892 |
| 0.6125 | 3.0 | 363 | 0.6006 | 0.0 | 0.0 | 0.0 | 0.8892 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3