metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: ABSA-SentencePair-domainAdapt-SemEval-Adapter-pfeiffer_madx-run2
results: []
ABSA-SentencePair-domainAdapt-SemEval-Adapter-pfeiffer_madx-run2
This model is a fine-tuned version of CAMeL-Lab/bert-base-arabic-camelbert-msa on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3666
- Accuracy: 0.8603
- F1: 0.8603
- Precision: 0.8603
- Recall: 0.8603
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5161 | 1.0 | 206 | 0.3972 | 0.8633 | 0.8633 | 0.8633 | 0.8633 |
0.3989 | 2.0 | 412 | 0.3739 | 0.8670 | 0.8670 | 0.8670 | 0.8670 |
0.3725 | 3.0 | 618 | 0.3870 | 0.8615 | 0.8615 | 0.8615 | 0.8615 |
0.3503 | 4.0 | 824 | 0.3892 | 0.8609 | 0.8609 | 0.8609 | 0.8609 |
0.3313 | 5.0 | 1030 | 0.3743 | 0.8682 | 0.8682 | 0.8682 | 0.8682 |
0.3118 | 6.0 | 1236 | 0.3666 | 0.8603 | 0.8603 | 0.8603 | 0.8603 |
0.2982 | 7.0 | 1442 | 0.3972 | 0.8621 | 0.8621 | 0.8621 | 0.8621 |
0.2854 | 8.0 | 1648 | 0.4064 | 0.8335 | 0.8335 | 0.8335 | 0.8335 |
0.2723 | 9.0 | 1854 | 0.3981 | 0.8505 | 0.8505 | 0.8505 | 0.8505 |
0.2641 | 10.0 | 2060 | 0.4067 | 0.8481 | 0.8481 | 0.8481 | 0.8481 |
0.2507 | 11.0 | 2266 | 0.4130 | 0.8439 | 0.8439 | 0.8439 | 0.8439 |
0.2518 | 12.0 | 2472 | 0.4023 | 0.8499 | 0.8499 | 0.8499 | 0.8499 |
0.2387 | 13.0 | 2678 | 0.4123 | 0.8451 | 0.8451 | 0.8451 | 0.8451 |
0.2304 | 14.0 | 2884 | 0.4369 | 0.8560 | 0.8560 | 0.8560 | 0.8560 |
0.2258 | 15.0 | 3090 | 0.4453 | 0.8384 | 0.8384 | 0.8384 | 0.8384 |
0.2258 | 16.0 | 3296 | 0.4272 | 0.8433 | 0.8433 | 0.8433 | 0.8433 |
0.2185 | 17.0 | 3502 | 0.4482 | 0.8420 | 0.8420 | 0.8420 | 0.8420 |
0.2097 | 18.0 | 3708 | 0.4532 | 0.8414 | 0.8414 | 0.8414 | 0.8414 |
0.2069 | 19.0 | 3914 | 0.4580 | 0.8439 | 0.8439 | 0.8439 | 0.8439 |
0.2072 | 20.0 | 4120 | 0.4556 | 0.8433 | 0.8433 | 0.8433 | 0.8433 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3