salbatarni's picture
End of training
168cdb5 verified
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
model-index:
  - name: arabert_cross_relevance_task1_fold4
    results: []

arabert_cross_relevance_task1_fold4

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2462
  • Qwk: 0.2970
  • Mse: 0.2462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.125 2 1.1439 0.0152 1.1439
No log 0.25 4 0.4542 0.1058 0.4542
No log 0.375 6 0.3468 0.2290 0.3468
No log 0.5 8 0.3648 0.1816 0.3648
No log 0.625 10 0.4917 0.2054 0.4917
No log 0.75 12 0.3361 0.2720 0.3361
No log 0.875 14 0.2581 0.2606 0.2581
No log 1.0 16 0.2596 0.3452 0.2596
No log 1.125 18 0.2652 0.3776 0.2652
No log 1.25 20 0.2495 0.3605 0.2495
No log 1.375 22 0.2883 0.2801 0.2883
No log 1.5 24 0.3460 0.2241 0.3460
No log 1.625 26 0.3144 0.2483 0.3144
No log 1.75 28 0.2568 0.3617 0.2568
No log 1.875 30 0.2645 0.3732 0.2645
No log 2.0 32 0.2745 0.3354 0.2745
No log 2.125 34 0.2642 0.3416 0.2642
No log 2.25 36 0.2371 0.3323 0.2371
No log 2.375 38 0.2288 0.3278 0.2288
No log 2.5 40 0.2336 0.3517 0.2336
No log 2.625 42 0.2327 0.3836 0.2327
No log 2.75 44 0.2341 0.4092 0.2341
No log 2.875 46 0.2410 0.3449 0.2410
No log 3.0 48 0.2695 0.3349 0.2695
No log 3.125 50 0.2860 0.2593 0.2860
No log 3.25 52 0.2584 0.2899 0.2584
No log 3.375 54 0.2408 0.3216 0.2408
No log 3.5 56 0.2232 0.3190 0.2232
No log 3.625 58 0.2179 0.3172 0.2179
No log 3.75 60 0.2229 0.3029 0.2229
No log 3.875 62 0.2274 0.2855 0.2274
No log 4.0 64 0.2344 0.2787 0.2344
No log 4.125 66 0.2449 0.2616 0.2449
No log 4.25 68 0.2478 0.2753 0.2478
No log 4.375 70 0.2462 0.3017 0.2462
No log 4.5 72 0.2513 0.3343 0.2513
No log 4.625 74 0.2528 0.3607 0.2528
No log 4.75 76 0.2439 0.3638 0.2439
No log 4.875 78 0.2300 0.3536 0.2300
No log 5.0 80 0.2244 0.3127 0.2244
No log 5.125 82 0.2243 0.3034 0.2243
No log 5.25 84 0.2290 0.2891 0.2290
No log 5.375 86 0.2240 0.3203 0.2240
No log 5.5 88 0.2237 0.3522 0.2237
No log 5.625 90 0.2245 0.3408 0.2245
No log 5.75 92 0.2258 0.3271 0.2258
No log 5.875 94 0.2291 0.3021 0.2291
No log 6.0 96 0.2407 0.2882 0.2407
No log 6.125 98 0.2527 0.2783 0.2527
No log 6.25 100 0.2560 0.2686 0.2560
No log 6.375 102 0.2524 0.2882 0.2524
No log 6.5 104 0.2478 0.3136 0.2478
No log 6.625 106 0.2439 0.3199 0.2439
No log 6.75 108 0.2489 0.3136 0.2489
No log 6.875 110 0.2507 0.3033 0.2507
No log 7.0 112 0.2439 0.3109 0.2439
No log 7.125 114 0.2358 0.3238 0.2358
No log 7.25 116 0.2350 0.3238 0.2350
No log 7.375 118 0.2450 0.3069 0.2450
No log 7.5 120 0.2670 0.2709 0.2670
No log 7.625 122 0.2757 0.2529 0.2757
No log 7.75 124 0.2626 0.2709 0.2626
No log 7.875 126 0.2540 0.2774 0.2540
No log 8.0 128 0.2430 0.2904 0.2430
No log 8.125 130 0.2346 0.2878 0.2346
No log 8.25 132 0.2324 0.2981 0.2324
No log 8.375 134 0.2325 0.2981 0.2325
No log 8.5 136 0.2349 0.2878 0.2349
No log 8.625 138 0.2374 0.3005 0.2374
No log 8.75 140 0.2415 0.2942 0.2415
No log 8.875 142 0.2456 0.2942 0.2456
No log 9.0 144 0.2483 0.2942 0.2483
No log 9.125 146 0.2484 0.2942 0.2484
No log 9.25 148 0.2480 0.2970 0.2480
No log 9.375 150 0.2488 0.2970 0.2488
No log 9.5 152 0.2480 0.2970 0.2480
No log 9.625 154 0.2465 0.2970 0.2465
No log 9.75 156 0.2462 0.2942 0.2462
No log 9.875 158 0.2463 0.2970 0.2463
No log 10.0 160 0.2462 0.2970 0.2462

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1