metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_relevance_task1_fold4
results: []
arabert_cross_relevance_task1_fold4
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2462
- Qwk: 0.2970
- Mse: 0.2462
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.125 | 2 | 1.1439 | 0.0152 | 1.1439 |
No log | 0.25 | 4 | 0.4542 | 0.1058 | 0.4542 |
No log | 0.375 | 6 | 0.3468 | 0.2290 | 0.3468 |
No log | 0.5 | 8 | 0.3648 | 0.1816 | 0.3648 |
No log | 0.625 | 10 | 0.4917 | 0.2054 | 0.4917 |
No log | 0.75 | 12 | 0.3361 | 0.2720 | 0.3361 |
No log | 0.875 | 14 | 0.2581 | 0.2606 | 0.2581 |
No log | 1.0 | 16 | 0.2596 | 0.3452 | 0.2596 |
No log | 1.125 | 18 | 0.2652 | 0.3776 | 0.2652 |
No log | 1.25 | 20 | 0.2495 | 0.3605 | 0.2495 |
No log | 1.375 | 22 | 0.2883 | 0.2801 | 0.2883 |
No log | 1.5 | 24 | 0.3460 | 0.2241 | 0.3460 |
No log | 1.625 | 26 | 0.3144 | 0.2483 | 0.3144 |
No log | 1.75 | 28 | 0.2568 | 0.3617 | 0.2568 |
No log | 1.875 | 30 | 0.2645 | 0.3732 | 0.2645 |
No log | 2.0 | 32 | 0.2745 | 0.3354 | 0.2745 |
No log | 2.125 | 34 | 0.2642 | 0.3416 | 0.2642 |
No log | 2.25 | 36 | 0.2371 | 0.3323 | 0.2371 |
No log | 2.375 | 38 | 0.2288 | 0.3278 | 0.2288 |
No log | 2.5 | 40 | 0.2336 | 0.3517 | 0.2336 |
No log | 2.625 | 42 | 0.2327 | 0.3836 | 0.2327 |
No log | 2.75 | 44 | 0.2341 | 0.4092 | 0.2341 |
No log | 2.875 | 46 | 0.2410 | 0.3449 | 0.2410 |
No log | 3.0 | 48 | 0.2695 | 0.3349 | 0.2695 |
No log | 3.125 | 50 | 0.2860 | 0.2593 | 0.2860 |
No log | 3.25 | 52 | 0.2584 | 0.2899 | 0.2584 |
No log | 3.375 | 54 | 0.2408 | 0.3216 | 0.2408 |
No log | 3.5 | 56 | 0.2232 | 0.3190 | 0.2232 |
No log | 3.625 | 58 | 0.2179 | 0.3172 | 0.2179 |
No log | 3.75 | 60 | 0.2229 | 0.3029 | 0.2229 |
No log | 3.875 | 62 | 0.2274 | 0.2855 | 0.2274 |
No log | 4.0 | 64 | 0.2344 | 0.2787 | 0.2344 |
No log | 4.125 | 66 | 0.2449 | 0.2616 | 0.2449 |
No log | 4.25 | 68 | 0.2478 | 0.2753 | 0.2478 |
No log | 4.375 | 70 | 0.2462 | 0.3017 | 0.2462 |
No log | 4.5 | 72 | 0.2513 | 0.3343 | 0.2513 |
No log | 4.625 | 74 | 0.2528 | 0.3607 | 0.2528 |
No log | 4.75 | 76 | 0.2439 | 0.3638 | 0.2439 |
No log | 4.875 | 78 | 0.2300 | 0.3536 | 0.2300 |
No log | 5.0 | 80 | 0.2244 | 0.3127 | 0.2244 |
No log | 5.125 | 82 | 0.2243 | 0.3034 | 0.2243 |
No log | 5.25 | 84 | 0.2290 | 0.2891 | 0.2290 |
No log | 5.375 | 86 | 0.2240 | 0.3203 | 0.2240 |
No log | 5.5 | 88 | 0.2237 | 0.3522 | 0.2237 |
No log | 5.625 | 90 | 0.2245 | 0.3408 | 0.2245 |
No log | 5.75 | 92 | 0.2258 | 0.3271 | 0.2258 |
No log | 5.875 | 94 | 0.2291 | 0.3021 | 0.2291 |
No log | 6.0 | 96 | 0.2407 | 0.2882 | 0.2407 |
No log | 6.125 | 98 | 0.2527 | 0.2783 | 0.2527 |
No log | 6.25 | 100 | 0.2560 | 0.2686 | 0.2560 |
No log | 6.375 | 102 | 0.2524 | 0.2882 | 0.2524 |
No log | 6.5 | 104 | 0.2478 | 0.3136 | 0.2478 |
No log | 6.625 | 106 | 0.2439 | 0.3199 | 0.2439 |
No log | 6.75 | 108 | 0.2489 | 0.3136 | 0.2489 |
No log | 6.875 | 110 | 0.2507 | 0.3033 | 0.2507 |
No log | 7.0 | 112 | 0.2439 | 0.3109 | 0.2439 |
No log | 7.125 | 114 | 0.2358 | 0.3238 | 0.2358 |
No log | 7.25 | 116 | 0.2350 | 0.3238 | 0.2350 |
No log | 7.375 | 118 | 0.2450 | 0.3069 | 0.2450 |
No log | 7.5 | 120 | 0.2670 | 0.2709 | 0.2670 |
No log | 7.625 | 122 | 0.2757 | 0.2529 | 0.2757 |
No log | 7.75 | 124 | 0.2626 | 0.2709 | 0.2626 |
No log | 7.875 | 126 | 0.2540 | 0.2774 | 0.2540 |
No log | 8.0 | 128 | 0.2430 | 0.2904 | 0.2430 |
No log | 8.125 | 130 | 0.2346 | 0.2878 | 0.2346 |
No log | 8.25 | 132 | 0.2324 | 0.2981 | 0.2324 |
No log | 8.375 | 134 | 0.2325 | 0.2981 | 0.2325 |
No log | 8.5 | 136 | 0.2349 | 0.2878 | 0.2349 |
No log | 8.625 | 138 | 0.2374 | 0.3005 | 0.2374 |
No log | 8.75 | 140 | 0.2415 | 0.2942 | 0.2415 |
No log | 8.875 | 142 | 0.2456 | 0.2942 | 0.2456 |
No log | 9.0 | 144 | 0.2483 | 0.2942 | 0.2483 |
No log | 9.125 | 146 | 0.2484 | 0.2942 | 0.2484 |
No log | 9.25 | 148 | 0.2480 | 0.2970 | 0.2480 |
No log | 9.375 | 150 | 0.2488 | 0.2970 | 0.2488 |
No log | 9.5 | 152 | 0.2480 | 0.2970 | 0.2480 |
No log | 9.625 | 154 | 0.2465 | 0.2970 | 0.2465 |
No log | 9.75 | 156 | 0.2462 | 0.2942 | 0.2462 |
No log | 9.875 | 158 | 0.2463 | 0.2970 | 0.2463 |
No log | 10.0 | 160 | 0.2462 | 0.2970 | 0.2462 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1