salbatarni's picture
End of training
839d778 verified
|
raw
history blame
3.31 kB
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
model-index:
  - name: arabert_cross_relevance_task1_fold0
    results: []

arabert_cross_relevance_task1_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1989
  • Qwk: 0.0319
  • Mse: 0.1989

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.0351 2 0.4878 0.0163 0.4878
No log 0.0702 4 0.1886 0.0202 0.1886
No log 0.1053 6 0.1831 0.0185 0.1831
No log 0.1404 8 0.2686 0.0273 0.2686
No log 0.1754 10 0.2485 0.0273 0.2485
No log 0.2105 12 0.2552 0.0273 0.2552
No log 0.2456 14 0.2716 0.0254 0.2716
No log 0.2807 16 0.3347 0.0217 0.3347
No log 0.3158 18 0.3725 0.0323 0.3725
No log 0.3509 20 0.3182 0.0361 0.3182
No log 0.3860 22 0.2412 0.0319 0.2412
No log 0.4211 24 0.1936 0.0319 0.1936
No log 0.4561 26 0.1659 0.0319 0.1659
No log 0.4912 28 0.1540 0.0339 0.1540
No log 0.5263 30 0.1483 0.0254 0.1483
No log 0.5614 32 0.1525 0.0273 0.1525
No log 0.5965 34 0.1560 0.0359 0.1560
No log 0.6316 36 0.1603 0.0339 0.1603
No log 0.6667 38 0.1720 0.0319 0.1720
No log 0.7018 40 0.1847 0.0319 0.1847
No log 0.7368 42 0.2033 0.0319 0.2033
No log 0.7719 44 0.2175 0.0319 0.2175
No log 0.8070 46 0.2213 0.0319 0.2213
No log 0.8421 48 0.2184 0.0319 0.2184
No log 0.8772 50 0.2126 0.0319 0.2126
No log 0.9123 52 0.2064 0.0319 0.2064
No log 0.9474 54 0.2016 0.0319 0.2016
No log 0.9825 56 0.1989 0.0319 0.1989

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1