sakren's picture
sakren/distil-bert-imeoocap
bf46dc9 verified
|
raw
history blame
3.29 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
  - accuracy
model-index:
  - name: distil-bert-imeoocap
    results: []

distil-bert-imeoocap

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5520
  • F1: 0.6416
  • Precision: 0.6437
  • Recall: 0.6442
  • Accuracy: 0.6442

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.4777 1.0 74 1.1554 0.6498 0.6489 0.6538 0.6538
0.395 2.0 148 1.2060 0.6062 0.6109 0.6135 0.6135
0.364 3.0 222 1.2625 0.6329 0.6436 0.6423 0.6423
0.3402 4.0 296 1.3512 0.6247 0.6330 0.6269 0.6269
0.3135 5.0 370 1.3587 0.6472 0.6442 0.6519 0.6519
0.307 6.0 444 1.4376 0.6258 0.6334 0.6288 0.6288
0.2903 7.0 518 1.3565 0.6502 0.6550 0.65 0.65
0.2931 8.0 592 1.4059 0.6310 0.6273 0.6365 0.6365
0.2805 9.0 666 1.3972 0.6357 0.6370 0.6365 0.6365
0.2772 10.0 740 1.4938 0.6205 0.6204 0.6308 0.6308
0.2767 11.0 814 1.4324 0.6256 0.6324 0.6269 0.6269
0.2634 12.0 888 1.5399 0.6457 0.6487 0.65 0.65
0.2829 13.0 962 1.4857 0.6369 0.6363 0.6385 0.6385
0.2444 14.0 1036 1.4879 0.6314 0.6385 0.6308 0.6308
0.2424 15.0 1110 1.5049 0.6357 0.6399 0.6365 0.6365
0.2332 16.0 1184 1.5277 0.6233 0.6268 0.625 0.625
0.2215 17.0 1258 1.5550 0.6390 0.6379 0.6423 0.6423
0.2235 18.0 1332 1.5593 0.6434 0.6449 0.6481 0.6481
0.213 19.0 1406 1.5631 0.6337 0.6303 0.6385 0.6385
0.2098 20.0 1480 1.5520 0.6416 0.6437 0.6442 0.6442

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2