sajjadi's picture
Training in progress, epoch 0
94c4db5 verified
|
raw
history blame
2.18 kB
metadata
base_model: google/vit-base-patch16-224-in21k
library_name: peft
license: apache-2.0
metrics:
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-lora-food101
    results: []

vit-base-patch16-224-in21k-finetuned-lora-food101

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2481
  • Accuracy: 0.9279

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 168
  • eval_batch_size: 168
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 672
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8568 0.9933 74 0.3500 0.8978
0.7674 2.0 149 0.3065 0.9089
0.724 2.9933 223 0.2805 0.9164
0.6316 4.0 298 0.2725 0.9197
0.6462 4.9933 372 0.2659 0.9195
0.5809 6.0 447 0.2623 0.9223
0.5212 6.9933 521 0.2624 0.9217
0.5561 8.0 596 0.2523 0.9259
0.5061 8.9933 670 0.2502 0.9268
0.4955 9.9329 740 0.2481 0.9279

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0