chaoscodes commited on
Commit
4f30d2d
1 Parent(s): 102429f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +172 -3
README.md CHANGED
@@ -1,3 +1,172 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ - id
6
+ - th
7
+ - vi
8
+ - ms
9
+ - lo
10
+ datasets:
11
+ - CohereForAI/aya_dataset
12
+ - CohereForAI/aya_collection
13
+ - Open-Orca/OpenOrca
14
+ - HuggingFaceH4/ultrachat_200k
15
+ - openbmb/UltraFeedback
16
+ tags:
17
+ - multilingual
18
+ - sea
19
+ - sailor
20
+ - sft
21
+ - chat
22
+ - instruction
23
+ widget:
24
+ - text: "如何制作烤鱼?"
25
+ example_title: "Chinese"
26
+ - text: "How to bake fish?"
27
+ example_title: "English"
28
+ - text: "Bagaimana cara memanggang ikan?"
29
+ example_title: "Malay"
30
+ - text: "วิธีย่างปลา?"
31
+ example_title: "Thai"
32
+ - text: "Bagaimana membuat bakaran ikan?"
33
+ example_title: "Indonesian"
34
+ - text: "Làm thế nào để nướng cá?"
35
+ example_title: "Vietnamese"
36
+ license: apache-2.0
37
+ base_model: sail/Sailor-14B
38
+ ---
39
+
40
+
41
+ <div align="center">
42
+ <img src="banner_sailor.jpg" width="700"/>
43
+ </div>
44
+
45
+ Sailor is a suite of Open Language Models tailored for South-East Asia (SEA), focusing on languages such as 🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao.
46
+ Developed with careful data curation, Sailor models are designed to understand and generate text across diverse linguistic landscapes of SEA region.
47
+ Built from [Qwen 1.5](https://huggingface.co/collections/Qwen/qwen15-65c0a2f577b1ecb76d786524) , Sailor encompasses models of varying sizes, spanning from 0.5B to 7B versions for different requirements.
48
+ We further fine-tune the base model with open-source datasets to get instruction-tuned models, namedly Sailor-Chat.
49
+ Benchmarking results demonstrate Sailor's proficiency in tasks such as question answering, commonsense reasoning, and other tasks in SEA languages.
50
+
51
+ > The logo was generated by MidJourney
52
+
53
+ ## Model Summary
54
+ - **Model Collections:** [Base Model & Chat Model](https://huggingface.co/collections/sail/sailor-65e19a749f978976f1959825)
55
+ - **Project Website:** [sailorllm.github.io](https://sailorllm.github.io/)
56
+ - **Codebase:** [github.com/sail-sg/sailor-llm](https://github.com/sail-sg/sailor-llm)
57
+ - **Technical Report:** [arxiv.org/pdf/2404.03608.pdf](https://arxiv.org/pdf/2404.03608.pdf)
58
+
59
+
60
+ ## Training details
61
+ Sailor is crafted by continually pre-training from language models like the remarkable Qwen 1.5 models, which already has a great performance on SEA languages.
62
+ The pre-training corpus heavily leverages the publicly available corpus, including
63
+ [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B),
64
+ [SkyPile](https://huggingface.co/datasets/Skywork/SkyPile-150B),
65
+ [CC100](https://huggingface.co/datasets/cc100) and [MADLAD-400](https://huggingface.co/datasets/allenai/MADLAD-400).
66
+ The instruction tuning corpus are all publicly available including
67
+ [aya_collection](https://huggingface.co/datasets/CohereForAI/aya_collection),
68
+ [aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset),
69
+ [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca).
70
+
71
+ By employing aggressive data deduplication and careful data cleaning on the collected corpus, we have attained a high-quality dataset spanning various languages.
72
+ Through systematic experiments to determine the weights of different languages, Sailor models undergo training from 200B to 400B tokens, tailored to different model sizes.
73
+ The approach boosts their performance on SEA languages while maintaining proficiency in English and Chinese without significant compromise.
74
+ Finally, we continually pre-train the Qwen1.5-0.5B model with 400 Billion tokens, and other models with 200 Billion tokens to obtain the Sailor models.
75
+
76
+ ### GGUF model list
77
+ | Name | Quant method | Bits | Size | Use case |
78
+ | ------------------------------------------------------------ | ------------ | ---- | -------- | -------------------------------------- |
79
+ | [ggml-model-Q2_K.gguf](https://huggingface.co/sail/Sailor-14B-Chat-gguf/blob/main/ggml-model-Q2_K.gguf) | Q2_K | 2 | 5.91 GB | medium, significant quality loss |
80
+ | [ggml-model-Q3_K_M.gguf](https://huggingface.co/sail/Sailor-14B-Chat-gguf/blob/main/ggml-model-Q3_K_M.gguf) | Q3_K_M | 3 | 7.42 GB | medium, balanced quality |
81
+ | [ggml-model-Q3_K_S.gguf](https://huggingface.co/sail/Sailor-14B-Chat-gguf/blob/main/ggml-model-Q3_K_S.gguf) | Q3_K_S | 3 | 6.77 GB | medium, high quality loss |
82
+ | [ggml-model-Q4_K_M.gguf](https://huggingface.co/sail/Sailor-14B-Chat-gguf/blob/main/ggml-model-Q4_K_M.gguf) | Q4_K_M | 4 | 9.19 GB | large, balanced quality |
83
+ | [ggml-model-Q4_K_S.gguf](https://huggingface.co/sail/Sailor-14B-Chat-gguf/blob/main/ggml-model-Q4_K_S.gguf) | Q4_K_S | 4 | 8.56 GB | large, greater quality loss |
84
+ | [ggml-model-Q5_K_M.gguf](https://huggingface.co/sail/Sailor-14B-Chat-gguf/blob/main/ggml-model-Q5_K_M.gguf) | Q5_K_M | 5 | 10.5 GB | large, balanced quality |
85
+ | [ggml-model-Q5_K_S.gguf](https://huggingface.co/sail/Sailor-14B-Chat-gguf/blob/main/ggml-model-Q5_K_S.gguf) | Q5_K_S | 5 | 10.0 GB | large, very low quality loss |
86
+ | [ggml-model-Q6_K.gguf](https://huggingface.co/sail/Sailor-14B-Chat-gguf/blob/main/ggml-model-Q6_K.gguf) | Q6_K | 6 | 12.3 GB | large, extremely low quality loss |
87
+ | [ggml-model-Q8_0.gguf](https://huggingface.co/sail/Sailor-14B-Chat-gguf/blob/main/ggml-model-Q8_0.gguf) | Q8_0 | 8 | 15.1 GB | very large, extremely low quality loss |
88
+ | [ggml-model-f16.gguf](https://huggingface.co/sail/Sailor-14B-Chat-gguf/blob/main/ggml-model-f16.gguf) | f16 | 16 | 28.3 GB | very large, no quality loss |
89
+
90
+ ### How to run with `llama.cpp`
91
+
92
+ ```shell
93
+ # install llama.cpp
94
+ git clone https://github.com/ggerganov/llama.cpp.git
95
+ cd llama.cpp
96
+ make
97
+ pip install -r requirements.txt
98
+
99
+ # generate with llama.cpp
100
+ ./main -ngl 40 -m ggml-model-Q4_K_M.gguf -p "<|im_start|>question\nCara memanggang ikan?\n<|im_start|>answer\n" --temp 0.7 --repeat_penalty 1.1 -n 400 -e
101
+ ```
102
+
103
+ > Change `-ngl 40` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
104
+
105
+ ### How to run with `llama-cpp-python`
106
+
107
+ ```shell
108
+ pip install llama-cpp-python
109
+ ```
110
+
111
+ ```python
112
+ import llama_cpp
113
+ import llama_cpp.llama_tokenizer
114
+
115
+ # load model
116
+ llama = llama_cpp.Llama.from_pretrained(
117
+ repo_id="sail/Sailor-14B-Chat-gguf",
118
+ filename="ggml-model-Q4_K_M.gguf",
119
+ tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("sail/Sailor-4B-Chat"),
120
+ n_gpu_layers=40,
121
+ n_threads=8,
122
+ verbose=False,
123
+ )
124
+
125
+ system_role= 'system'
126
+ user_role = 'question'
127
+ assistant_role = "answer"
128
+
129
+ system_prompt= \
130
+ 'You are an AI assistant named Sailor created by Sea AI Lab. \
131
+ Your answer should be friendly, unbiased, faithful, informative and detailed.'
132
+ system_prompt = f"<|im_start|>{system_role}\n{system_prompt}<|im_end|>"
133
+
134
+ # inference example
135
+ output = llama(
136
+ system_prompt + '\n' + f"<|im_start|>{user_role}\nCara memanggang ikan?\n<|im_start|>{assistant_role}\n",
137
+ max_tokens=256,
138
+ temperature=0.7,
139
+ top_p=0.75,
140
+ top_k=60,
141
+ stop=["<|im_end|>", "<|endoftext|>"]
142
+ )
143
+
144
+ print(output['choices'][0]['text'])
145
+ ```
146
+ ### How to build demo
147
+
148
+ Install `llama-cpp-python` and `gradio`, then run [script](https://github.com/sail-sg/sailor-llm/blob/main/demo/llamacpp_demo.py).
149
+
150
+ # License
151
+
152
+ Sailor is distributed under the terms of the Apache License 2.0.
153
+ No restrict on the research and the commercial use, but should comply with the [Qwen License](https://huggingface.co/Qwen/Qwen1.5-1.8B/blob/main/LICENSE).
154
+
155
+ ## Citation
156
+
157
+ If you find sailor useful, please cite our work as follows:
158
+
159
+ ```
160
+ @misc{dou2024sailor,
161
+ title={Sailor: Open Language Models for South-East Asia},
162
+ author={Longxu Dou and Qian Liu and Guangtao Zeng and Jia Guo and Jiahui Zhou and Wei Lu and Min Lin},
163
+ year={2024},
164
+ eprint={2404.03608},
165
+ archivePrefix={arXiv},
166
+ primaryClass={cs.CL}
167
+ }
168
+ ```
169
+
170
+ # Contact Us
171
+
172
+ If you have any questions, please raise an issue or contact us at [doulx@sea.com](mailto:doulx@sea.com) or [liuqian@sea.com](mailto:liuqian@sea.com).