saideep-arikontham's picture
trump_stance_detection
c13ee19 verified
metadata
library_name: peft
tags:
  - generated_from_trainer
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: twitter-roberta-base-sentiment-latest-trump-stance-1
    results: []

twitter-roberta-base-sentiment-latest-trump-stance-1

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1168
  • Accuracy: {'accuracy': 0.6666666666666666}
  • Precision: {'precision': 0.5697940503432495}
  • Recall: {'recall': 0.7302052785923754}
  • F1 Score: {'f1': 0.6401028277634961}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
0.583 1.0 3600 0.3772 {'accuracy': 0.83875} {'precision': 0.812933025404157} {'recall': 0.88} {'f1': 0.8451380552220888}
0.5621 2.0 7200 0.3725 {'accuracy': 0.853125} {'precision': 0.9407176287051482} {'recall': 0.75375} {'f1': 0.8369188063844553}
0.5813 3.0 10800 1.0373 {'accuracy': 0.625625} {'precision': 0.5719398711524696} {'recall': 0.99875} {'f1': 0.7273554847519345}
0.5317 4.0 14400 0.3697 {'accuracy': 0.875625} {'precision': 0.8917861799217731} {'recall': 0.855} {'f1': 0.8730057434588385}
0.5498 5.0 18000 0.4457 {'accuracy': 0.8525} {'precision': 0.8551637279596978} {'recall': 0.84875} {'f1': 0.8519447929736512}
0.5388 6.0 21600 0.4715 {'accuracy': 0.829375} {'precision': 0.9136577708006279} {'recall': 0.7275} {'f1': 0.8100208768267223}
0.5885 7.0 25200 0.3773 {'accuracy': 0.85875} {'precision': 0.8836898395721925} {'recall': 0.82625} {'f1': 0.8540051679586563}
0.4961 8.0 28800 0.3819 {'accuracy': 0.869375} {'precision': 0.9053497942386831} {'recall': 0.825} {'f1': 0.8633093525179856}
0.5421 9.0 32400 0.4011 {'accuracy': 0.85875} {'precision': 0.8239277652370203} {'recall': 0.9125} {'f1': 0.8659549228944247}
0.5123 10.0 36000 0.3404 {'accuracy': 0.88125} {'precision': 0.9034391534391535} {'recall': 0.85375} {'f1': 0.877892030848329}
0.5996 11.0 39600 0.3435 {'accuracy': 0.880625} {'precision': 0.8801498127340824} {'recall': 0.88125} {'f1': 0.8806995627732667}
0.4871 12.0 43200 0.2972 {'accuracy': 0.890625} {'precision': 0.9021879021879022} {'recall': 0.87625} {'f1': 0.8890298034242232}
0.5272 13.0 46800 0.3629 {'accuracy': 0.874375} {'precision': 0.9423929098966026} {'recall': 0.7975} {'f1': 0.8639133378469871}
0.5897 14.0 50400 0.3164 {'accuracy': 0.88} {'precision': 0.9075067024128687} {'recall': 0.84625} {'f1': 0.8758085381630013}
0.4963 15.0 54000 0.3343 {'accuracy': 0.87625} {'precision': 0.922752808988764} {'recall': 0.82125} {'f1': 0.8690476190476191}
0.5132 16.0 57600 0.5593 {'accuracy': 0.855625} {'precision': 0.9330289193302892} {'recall': 0.76625} {'f1': 0.8414550446122169}
0.447 17.0 61200 0.3651 {'accuracy': 0.874375} {'precision': 0.8544378698224852} {'recall': 0.9025} {'f1': 0.8778115501519757}
0.5189 18.0 64800 0.3919 {'accuracy': 0.878125} {'precision': 0.9315263908701854} {'recall': 0.81625} {'f1': 0.8700866089273818}
0.4835 19.0 68400 0.5706 {'accuracy': 0.846875} {'precision': 0.9541734860883797} {'recall': 0.72875} {'f1': 0.8263642806520198}
0.455 20.0 72000 0.3523 {'accuracy': 0.881875} {'precision': 0.8813982521847691} {'recall': 0.8825} {'f1': 0.8819487820112429}
0.4791 21.0 75600 0.3292 {'accuracy': 0.884375} {'precision': 0.8546712802768166} {'recall': 0.92625} {'f1': 0.8890221955608878}
0.512 22.0 79200 0.4456 {'accuracy': 0.87} {'precision': 0.9391691394658753} {'recall': 0.79125} {'f1': 0.858887381275441}
0.4783 23.0 82800 0.3283 {'accuracy': 0.880625} {'precision': 0.9188445667125172} {'recall': 0.835} {'f1': 0.8749181401440733}
0.4699 24.0 86400 0.3399 {'accuracy': 0.885} {'precision': 0.9074074074074074} {'recall': 0.8575} {'f1': 0.8817480719794345}
0.4485 25.0 90000 0.3156 {'accuracy': 0.89} {'precision': 0.8949367088607595} {'recall': 0.88375} {'f1': 0.889308176100629}
0.4305 26.0 93600 0.3105 {'accuracy': 0.894375} {'precision': 0.9092088197146563} {'recall': 0.87625} {'f1': 0.8924252068746021}
0.4704 27.0 97200 0.3528 {'accuracy': 0.879375} {'precision': 0.8634730538922155} {'recall': 0.90125} {'f1': 0.8819571865443425}
0.4589 28.0 100800 0.3534 {'accuracy': 0.879375} {'precision': 0.8696711327649208} {'recall': 0.8925} {'f1': 0.8809376927822332}
0.4831 29.0 104400 0.3315 {'accuracy': 0.891875} {'precision': 0.9108781127129751} {'recall': 0.86875} {'f1': 0.889315419065899}
0.4931 30.0 108000 0.3200 {'accuracy': 0.891875} {'precision': 0.9185580774365821} {'recall': 0.86} {'f1': 0.8883150419625565}
0.4286 31.0 111600 0.3488 {'accuracy': 0.8825} {'precision': 0.9180327868852459} {'recall': 0.84} {'f1': 0.8772845953002611}
0.4309 32.0 115200 0.3192 {'accuracy': 0.891875} {'precision': 0.8875154511742892} {'recall': 0.8975} {'f1': 0.8924798011187073}
0.3896 33.0 118800 0.3294 {'accuracy': 0.881875} {'precision': 0.8632580261593341} {'recall': 0.9075} {'f1': 0.8848263254113345}
0.4327 34.0 122400 0.3003 {'accuracy': 0.899375} {'precision': 0.9346938775510204} {'recall': 0.85875} {'f1': 0.895114006514658}
0.4179 35.0 126000 0.3189 {'accuracy': 0.898125} {'precision': 0.9368998628257887} {'recall': 0.85375} {'f1': 0.8933943754087639}
0.4023 36.0 129600 0.3284 {'accuracy': 0.8775} {'precision': 0.8408577878103838} {'recall': 0.93125} {'f1': 0.8837485172004745}
0.4285 37.0 133200 0.3221 {'accuracy': 0.894375} {'precision': 0.9280868385345997} {'recall': 0.855} {'f1': 0.8900455432661027}
0.3988 38.0 136800 0.2861 {'accuracy': 0.896875} {'precision': 0.8905289052890529} {'recall': 0.905} {'f1': 0.8977061376317421}
0.4034 39.0 140400 0.3501 {'accuracy': 0.895625} {'precision': 0.9438990182328191} {'recall': 0.84125} {'f1': 0.8896232650363516}
0.3743 40.0 144000 0.3654 {'accuracy': 0.886875} {'precision': 0.9176788124156545} {'recall': 0.85} {'f1': 0.8825438027255029}
0.3979 41.0 147600 0.3230 {'accuracy': 0.899375} {'precision': 0.9311740890688259} {'recall': 0.8625} {'f1': 0.8955223880597015}
0.3808 42.0 151200 0.2978 {'accuracy': 0.90375} {'precision': 0.9205729166666666} {'recall': 0.88375} {'f1': 0.9017857142857143}
0.3777 43.0 154800 0.2805 {'accuracy': 0.899375} {'precision': 0.9220607661822986} {'recall': 0.8725} {'f1': 0.8965960179833012}
0.3631 44.0 158400 0.2984 {'accuracy': 0.898125} {'precision': 0.9163398692810457} {'recall': 0.87625} {'f1': 0.8958466453674121}
0.3674 45.0 162000 0.2924 {'accuracy': 0.90375} {'precision': 0.9376693766937669} {'recall': 0.865} {'f1': 0.8998699609882965}
0.3539 46.0 165600 0.3158 {'accuracy': 0.89375} {'precision': 0.899746192893401} {'recall': 0.88625} {'f1': 0.8929471032745592}
0.3557 47.0 169200 0.2861 {'accuracy': 0.9} {'precision': 0.9145077720207254} {'recall': 0.8825} {'f1': 0.8982188295165394}
0.38 48.0 172800 0.2962 {'accuracy': 0.894375} {'precision': 0.9029374201787995} {'recall': 0.88375} {'f1': 0.8932406822488945}
0.3754 49.0 176400 0.2905 {'accuracy': 0.9} {'precision': 0.9166666666666666} {'recall': 0.88} {'f1': 0.8979591836734694}
0.3717 50.0 180000 0.2880 {'accuracy': 0.89875} {'precision': 0.9153645833333334} {'recall': 0.87875} {'f1': 0.8966836734693877}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2