Transformers
PyTorch
Portuguese
israelcamp's picture
Update README.md
566b8c2
---
inference: false
language: pt
datasets:
- assin2
license: mit
---
# DeBERTinha XSmall for Recognizing Textual Entailment
### **Labels**:
* 0 : There is no entailment between premise and hypothesis.
* 1 : There is entailment between premise and hypothesis.
## Full classification example
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
import numpy as np
import torch
from scipy.special import softmax
model_name = "sagui-nlp/debertinha-ptbr-xsmall-assin2-rte"
s1 = "Os homens estão cuidadosamente colocando as malas no porta-malas de um carro."
s2 = "Os homens estão colocando bagagens dentro do porta-malas de um carro."
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
model_input = tokenizer(*([s1], [s2]), padding=True, return_tensors="pt")
with torch.no_grad():
output = model(**model_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
l = config.id2label[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) Label: {l} Score: {np.round(float(s), 4)}")
```
## Citation
```
@misc{campiotti2023debertinha,
title={DeBERTinha: A Multistep Approach to Adapt DebertaV3 XSmall for Brazilian Portuguese Natural Language Processing Task},
author={Israel Campiotti and Matheus Rodrigues and Yuri Albuquerque and Rafael Azevedo and Alyson Andrade},
year={2023},
eprint={2309.16844},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```