|
--- |
|
inference: false |
|
language: pt |
|
datasets: |
|
- assin2 |
|
license: mit |
|
--- |
|
|
|
# DeBERTinha XSmall for Recognizing Textual Entailment |
|
|
|
### **Labels**: |
|
* 0 : There is no entailment between premise and hypothesis. |
|
* 1 : There is entailment between premise and hypothesis. |
|
|
|
|
|
## Full classification example |
|
|
|
```python |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig |
|
import numpy as np |
|
import torch |
|
from scipy.special import softmax |
|
|
|
model_name = "sagui-nlp/debertinha-ptbr-xsmall-assin2-rte" |
|
s1 = "Os homens estão cuidadosamente colocando as malas no porta-malas de um carro." |
|
s2 = "Os homens estão colocando bagagens dentro do porta-malas de um carro." |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
config = AutoConfig.from_pretrained(model_name) |
|
model_input = tokenizer(*([s1], [s2]), padding=True, return_tensors="pt") |
|
with torch.no_grad(): |
|
output = model(**model_input) |
|
scores = output[0][0].detach().numpy() |
|
scores = softmax(scores) |
|
ranking = np.argsort(scores) |
|
ranking = ranking[::-1] |
|
for i in range(scores.shape[0]): |
|
l = config.id2label[ranking[i]] |
|
s = scores[ranking[i]] |
|
print(f"{i+1}) Label: {l} Score: {np.round(float(s), 4)}") |
|
``` |
|
|
|
## Citation |
|
|
|
``` |
|
@misc{campiotti2023debertinha, |
|
title={DeBERTinha: A Multistep Approach to Adapt DebertaV3 XSmall for Brazilian Portuguese Natural Language Processing Task}, |
|
author={Israel Campiotti and Matheus Rodrigues and Yuri Albuquerque and Rafael Azevedo and Alyson Andrade}, |
|
year={2023}, |
|
eprint={2309.16844}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |