saeedmaroof
commited on
Commit
•
f028548
1
Parent(s):
57d1d0a
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: hubert-large-xlsr-common1000asli-demo-colab-dd
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# hubert-large-xlsr-common1000asli-demo-colab-dd
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.0754
|
20 |
+
- Wer: 0.5189
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 128
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 256
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 500
|
48 |
+
- num_epochs: 1000
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
55 |
+
| 8.5628 | 10.53 | 400 | 1.4949 | 0.9944 |
|
56 |
+
| 0.7496 | 21.05 | 800 | 0.6398 | 0.6917 |
|
57 |
+
| 0.3298 | 31.58 | 1200 | 0.6116 | 0.6148 |
|
58 |
+
| 0.228 | 42.11 | 1600 | 0.6544 | 0.5835 |
|
59 |
+
| 0.17 | 52.63 | 2000 | 0.7028 | 0.5955 |
|
60 |
+
| 0.1466 | 63.16 | 2400 | 0.6935 | 0.5992 |
|
61 |
+
| 0.1261 | 73.68 | 2800 | 0.7101 | 0.5735 |
|
62 |
+
| 0.1109 | 84.21 | 3200 | 0.7360 | 0.5610 |
|
63 |
+
| 0.1001 | 94.74 | 3600 | 0.7924 | 0.5604 |
|
64 |
+
| 0.0856 | 105.26 | 4000 | 0.7975 | 0.5653 |
|
65 |
+
| 0.0821 | 115.79 | 4400 | 0.8027 | 0.5611 |
|
66 |
+
| 0.0783 | 126.32 | 4800 | 0.8238 | 0.5566 |
|
67 |
+
| 0.0691 | 136.84 | 5200 | 0.8109 | 0.5519 |
|
68 |
+
| 0.0627 | 147.37 | 5600 | 0.8231 | 0.5544 |
|
69 |
+
| 0.0589 | 157.89 | 6000 | 0.8747 | 0.5506 |
|
70 |
+
| 0.0548 | 168.42 | 6400 | 0.8440 | 0.5478 |
|
71 |
+
| 0.052 | 178.95 | 6800 | 0.8289 | 0.5393 |
|
72 |
+
| 0.0471 | 189.47 | 7200 | 0.8689 | 0.5492 |
|
73 |
+
| 0.0486 | 200.0 | 7600 | 0.8437 | 0.5372 |
|
74 |
+
| 0.0433 | 210.53 | 8000 | 0.8360 | 0.5453 |
|
75 |
+
| 0.0419 | 221.05 | 8400 | 0.8645 | 0.5391 |
|
76 |
+
| 0.0393 | 231.58 | 8800 | 0.8821 | 0.5506 |
|
77 |
+
| 0.0404 | 242.11 | 9200 | 0.9073 | 0.5419 |
|
78 |
+
| 1.318 | 252.63 | 9600 | 0.8408 | 0.5813 |
|
79 |
+
| 0.0489 | 263.16 | 10000 | 0.8206 | 0.5449 |
|
80 |
+
| 0.0406 | 273.68 | 10400 | 0.8592 | 0.5466 |
|
81 |
+
| 0.0359 | 284.21 | 10800 | 0.8597 | 0.5476 |
|
82 |
+
| 0.0344 | 294.74 | 11200 | 0.8349 | 0.5369 |
|
83 |
+
| 0.032 | 305.26 | 11600 | 0.8352 | 0.5379 |
|
84 |
+
| 0.0299 | 315.79 | 12000 | 0.8409 | 0.5420 |
|
85 |
+
| 0.0287 | 326.32 | 12400 | 0.8562 | 0.5441 |
|
86 |
+
| 0.0292 | 336.84 | 12800 | 0.9100 | 0.5519 |
|
87 |
+
| 0.0258 | 347.37 | 13200 | 0.9213 | 0.5447 |
|
88 |
+
| 0.0229 | 357.89 | 13600 | 0.9020 | 0.5343 |
|
89 |
+
| 0.0257 | 368.42 | 14000 | 0.9219 | 0.5531 |
|
90 |
+
| 0.0236 | 378.95 | 14400 | 0.9301 | 0.5516 |
|
91 |
+
| 0.0241 | 389.47 | 14800 | 0.9058 | 0.5359 |
|
92 |
+
| 0.022 | 400.0 | 15200 | 0.9067 | 0.5408 |
|
93 |
+
| 3.4199 | 410.53 | 15600 | 0.9661 | 0.6957 |
|
94 |
+
| 0.0554 | 421.05 | 16000 | 0.8984 | 0.5661 |
|
95 |
+
| 0.0289 | 431.58 | 16400 | 0.8843 | 0.5504 |
|
96 |
+
| 0.0234 | 442.11 | 16800 | 0.8943 | 0.5407 |
|
97 |
+
| 0.0219 | 452.63 | 17200 | 0.9325 | 0.5391 |
|
98 |
+
| 0.0194 | 463.16 | 17600 | 0.9588 | 0.5442 |
|
99 |
+
| 0.0195 | 473.68 | 18000 | 0.9660 | 0.5478 |
|
100 |
+
| 0.0184 | 484.21 | 18400 | 0.9325 | 0.5394 |
|
101 |
+
| 0.0178 | 494.74 | 18800 | 0.9526 | 0.5435 |
|
102 |
+
| 0.0171 | 505.26 | 19200 | 0.9533 | 0.5412 |
|
103 |
+
| 0.0174 | 515.79 | 19600 | 0.8962 | 0.5410 |
|
104 |
+
| 0.0165 | 526.32 | 20000 | 0.9699 | 0.5422 |
|
105 |
+
| 0.0153 | 536.84 | 20400 | 0.9252 | 0.5301 |
|
106 |
+
| 0.0141 | 547.37 | 20800 | 0.9364 | 0.5401 |
|
107 |
+
| 0.0148 | 557.89 | 21200 | 0.9479 | 0.5387 |
|
108 |
+
| 0.0141 | 568.42 | 21600 | 0.9692 | 0.5365 |
|
109 |
+
| 0.0136 | 578.95 | 22000 | 0.9779 | 0.5343 |
|
110 |
+
| 0.0127 | 589.47 | 22400 | 0.9684 | 0.5303 |
|
111 |
+
| 0.0122 | 600.0 | 22800 | 0.9930 | 0.5346 |
|
112 |
+
| 0.0122 | 610.53 | 23200 | 0.9733 | 0.5348 |
|
113 |
+
| 0.0112 | 621.05 | 23600 | 1.0059 | 0.5374 |
|
114 |
+
| 0.0113 | 631.58 | 24000 | 0.9801 | 0.5302 |
|
115 |
+
| 0.0114 | 642.11 | 24400 | 0.9901 | 0.5336 |
|
116 |
+
| 0.0101 | 652.63 | 24800 | 0.9943 | 0.5383 |
|
117 |
+
| 0.0106 | 663.16 | 25200 | 1.0296 | 0.5272 |
|
118 |
+
| 0.0099 | 673.68 | 25600 | 1.0321 | 0.5294 |
|
119 |
+
| 0.01 | 684.21 | 26000 | 1.0282 | 0.5310 |
|
120 |
+
| 0.01 | 694.74 | 26400 | 1.0336 | 0.5326 |
|
121 |
+
| 0.009 | 705.26 | 26800 | 1.0130 | 0.5247 |
|
122 |
+
| 0.0087 | 715.79 | 27200 | 1.0326 | 0.5261 |
|
123 |
+
| 0.0086 | 726.32 | 27600 | 1.0343 | 0.5255 |
|
124 |
+
| 0.0085 | 736.84 | 28000 | 1.0009 | 0.5338 |
|
125 |
+
| 0.0086 | 747.37 | 28400 | 1.0369 | 0.5279 |
|
126 |
+
| 0.008 | 757.89 | 28800 | 1.0063 | 0.5326 |
|
127 |
+
| 0.0095 | 768.42 | 29200 | 1.0152 | 0.5238 |
|
128 |
+
| 0.0072 | 778.95 | 29600 | 1.0313 | 0.5263 |
|
129 |
+
| 0.0073 | 789.47 | 30000 | 1.0440 | 0.5229 |
|
130 |
+
| 0.0068 | 800.0 | 30400 | 1.0348 | 0.5257 |
|
131 |
+
| 0.0076 | 810.53 | 30800 | 1.0040 | 0.5237 |
|
132 |
+
| 0.007 | 821.05 | 31200 | 1.0382 | 0.5205 |
|
133 |
+
| 0.0069 | 831.58 | 31600 | 1.0217 | 0.5276 |
|
134 |
+
| 0.0064 | 842.11 | 32000 | 1.0425 | 0.5301 |
|
135 |
+
| 0.0067 | 852.63 | 32400 | 1.0384 | 0.5262 |
|
136 |
+
| 0.006 | 863.16 | 32800 | 1.0698 | 0.5294 |
|
137 |
+
| 0.0058 | 873.68 | 33200 | 1.0412 | 0.5229 |
|
138 |
+
| 0.0063 | 884.21 | 33600 | 1.0423 | 0.5225 |
|
139 |
+
| 0.0053 | 894.74 | 34000 | 1.0554 | 0.5213 |
|
140 |
+
| 0.0055 | 905.26 | 34400 | 1.0593 | 0.5202 |
|
141 |
+
| 0.0051 | 915.79 | 34800 | 1.0716 | 0.5211 |
|
142 |
+
| 0.0052 | 926.32 | 35200 | 1.0668 | 0.5182 |
|
143 |
+
| 0.0048 | 936.84 | 35600 | 1.0840 | 0.5209 |
|
144 |
+
| 0.0052 | 947.37 | 36000 | 1.0633 | 0.5173 |
|
145 |
+
| 0.0046 | 957.89 | 36400 | 1.0747 | 0.5184 |
|
146 |
+
| 0.0051 | 968.42 | 36800 | 1.0766 | 0.5190 |
|
147 |
+
| 0.0052 | 978.95 | 37200 | 1.0748 | 0.5194 |
|
148 |
+
| 0.005 | 989.47 | 37600 | 1.0778 | 0.5186 |
|
149 |
+
| 0.005 | 1000.0 | 38000 | 1.0754 | 0.5189 |
|
150 |
+
|
151 |
+
|
152 |
+
### Framework versions
|
153 |
+
|
154 |
+
- Transformers 4.11.3
|
155 |
+
- Pytorch 1.10.0+cu102
|
156 |
+
- Datasets 1.13.3
|
157 |
+
- Tokenizers 0.10.3
|