Alex Sadovsky commited on
Commit
9faad0d
·
verified ·
1 Parent(s): e6ea3db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -12
README.md CHANGED
@@ -8,31 +8,42 @@ pipeline_tag: text-generation
8
  tags:
9
  - MBTI
10
  - psychology
11
- - Q-generation
12
  - profiling
 
13
  ---
14
 
15
- # Flan-T5 Base — MBTI Question Generator
16
- Fine-tuned version of **Flan-T5-Base** on a custom MBTI dataset for generating personality-related interview questions.
 
 
 
 
 
17
  ---
18
- ## 🧩 Model Overview
19
 
20
- **Task:** Text Generation
21
- **Architecture:** Encoder-Decoder (Seq2Seq)
22
- **Framework:** 🤗 Hugging Face Transformers
23
- **Platform:** Kaggle GPU (A100)
24
- **Author:** [f3nsmart](https://huggingface.co/f3nsmart)
 
 
 
 
 
25
 
26
- This model is trained to generate **thoughtful, personality-driven interview questions** similar to MBTI self-assessment prompts.
27
  ---
28
- ## 🧠 Example Usage
 
 
29
  ```python
30
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
31
 
32
  model = AutoModelForSeq2SeqLM.from_pretrained("f3nsmart/ft-flan-t5-base-qgen")
33
  tokenizer = AutoTokenizer.from_pretrained("f3nsmart/ft-flan-t5-base-qgen")
34
 
35
- prompt = "Describe how you make decisions under pressure."
36
  inputs = tokenizer(prompt, return_tensors="pt")
37
  outputs = model.generate(**inputs, max_new_tokens=60)
38
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
 
8
  tags:
9
  - MBTI
10
  - psychology
11
+ - question-generation
12
  - profiling
13
+ - random-question-generator
14
  ---
15
 
16
+ # Flan-T5 Base — MBTI Random Question Generator
17
+
18
+ This repository hosts a fine-tuned version of **google/flan-t5-base**, adapted for generating *random, personality-themed questions* in the context of the **Myers–Briggs Type Indicator (MBTI)** framework.
19
+
20
+ The model produces short, standalone prompts designed to encourage self-reflection and discussion related to personality traits, emotions, and decision-making.
21
+ It operates as a **randomized question generator** rather than an interactive conversational model.
22
+
23
  ---
 
24
 
25
+ ## Model Purpose
26
+
27
+ The goal of this model is to generate concise, psychologically relevant questions similar to those found in MBTI-style interviews or self-assessment forms.
28
+ Each output question is intended to provoke reflection or reveal an aspect of human cognition, motivation, or behavior.
29
+
30
+ **Key Characteristics:**
31
+ - Generates *independent questions* — no memory or contextual carryover between generations.
32
+ - Optimized for **single-turn usage** (no long-term dialogue support).
33
+ - Produces diverse questions across multiple MBTI domains (e.g., intuition, sensing, thinking, feeling, judging, perceiving).
34
+ - Ideal for personality research tools, psychological chatbots, or training datasets for reflective AI dialogue.
35
 
 
36
  ---
37
+
38
+ ## Example Usage
39
+
40
  ```python
41
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
42
 
43
  model = AutoModelForSeq2SeqLM.from_pretrained("f3nsmart/ft-flan-t5-base-qgen")
44
  tokenizer = AutoTokenizer.from_pretrained("f3nsmart/ft-flan-t5-base-qgen")
45
 
46
+ prompt = "Generate a question about emotional decision-making."
47
  inputs = tokenizer(prompt, return_tensors="pt")
48
  outputs = model.generate(**inputs, max_new_tokens=60)
49
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))