|
|
|
|
|
|
|
"""Forked from the MosaicGPT model class from the Mosaic Examples codebase of date May 1st, 2023. |
|
Permalink: https://github.com/mosaicml/examples/blob/52cd4fef69497f225a034fcd10692f8613732d10/examples/llm/src/models/mosaic_gpt/mosaic_gpt.py |
|
""" |
|
|
|
"""A simple, flexible implementation of a GPT model. |
|
|
|
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py |
|
""" |
|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import warnings |
|
|
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from typing import List, Optional, Tuple |
|
|
|
from .attention import attn_bias as module_attn_bias, attn_bias_shape as module_attn_bias_shape |
|
from .gpt_blocks import GPTBlock |
|
from .configuration_replit_lm import \ |
|
ReplitLMConfig |
|
from .param_init_fns import MODEL_INIT_REGISTRY |
|
from .low_precision_layernorm import LPLayerNorm |
|
|
|
|
|
class ReplitLM(PreTrainedModel): |
|
config_class = ReplitLMConfig |
|
base_model_prefix = 'replit_lm' |
|
|
|
def __init__(self, config: ReplitLMConfig): |
|
super().__init__(config) |
|
|
|
if config.attn_impl == 'flash' and config.alibi: |
|
raise RuntimeError("ALiBi is not supported with flash attention. Please use triton or torch.") |
|
|
|
self.attn_impl = config.attn_impl |
|
self.prefix_lm = config.prefix_lm |
|
self.attn_uses_sequence_id = config.attn_uses_sequence_id |
|
self.alibi = config.alibi |
|
self.alibi_bias_max = config.alibi_bias_max |
|
|
|
layernorm_class = LPLayerNorm if config.low_precision_layernorm else nn.LayerNorm |
|
|
|
|
|
|
|
self.embedding_fraction = config.embedding_fraction |
|
|
|
self.transformer = nn.ModuleDict({ |
|
'wte': |
|
nn.Embedding(config.vocab_size, |
|
config.d_model, |
|
device=config.init_device) |
|
}) |
|
if not self.alibi: |
|
self.transformer.update({ |
|
'wpe': |
|
nn.Embedding(config.max_seq_len, |
|
config.d_model, |
|
device=config.init_device) |
|
}) |
|
self.transformer.update({'emb_drop': nn.Dropout(config.emb_pdrop)}) |
|
self.transformer.update({ |
|
'blocks': |
|
nn.ModuleList([ |
|
GPTBlock(device=config.init_device, |
|
**config.to_dict()) |
|
for _ in range(config.n_layers) |
|
]) |
|
}) |
|
self.transformer.update({ |
|
'ln_f': layernorm_class(config.d_model, device=config.init_device) |
|
}) |
|
|
|
|
|
|
|
self.logit_scale = None |
|
if config.logit_scale is not None: |
|
logit_scale = config.logit_scale |
|
if isinstance(logit_scale, str): |
|
if logit_scale == 'inv_sqrt_d_model': |
|
logit_scale = 1 / math.sqrt(config.d_model) |
|
else: |
|
raise ValueError( |
|
f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." |
|
) |
|
self.logit_scale = logit_scale |
|
|
|
if config.init_device != 'meta': |
|
print( |
|
f'You are using {config.init_device=}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.' |
|
) |
|
self.apply(self.param_init_fn) |
|
|
|
self.is_causal = not self.prefix_lm |
|
|
|
|
|
self._attn_bias_initialized = False |
|
self.attn_bias = None |
|
self.attn_bias_shape = module_attn_bias_shape( |
|
self.attn_impl, |
|
config.n_heads, |
|
config.max_seq_len, |
|
self.alibi, |
|
prefix_lm=self.prefix_lm, |
|
causal=self.is_causal, |
|
use_sequence_id=self.attn_uses_sequence_id) |
|
|
|
if config.no_bias: |
|
for module in self.modules(): |
|
if hasattr(module, 'bias') and isinstance( |
|
module.bias, nn.Parameter): |
|
if config.verbose: |
|
print(f'Removing bias ({module.bias}) from {module}.') |
|
module.register_parameter('bias', None) |
|
|
|
if config.verbose and config.verbose > 2: |
|
print(self) |
|
|
|
@torch.no_grad() |
|
def _attn_bias(self, |
|
device, |
|
dtype, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None): |
|
if not self._attn_bias_initialized: |
|
if self.attn_bias_shape: |
|
self.attn_bias = torch.zeros(self.attn_bias_shape, |
|
device=device, |
|
dtype=dtype) |
|
self.attn_bias = module_attn_bias( |
|
self.attn_impl, |
|
self.attn_bias, |
|
self.config.n_heads, |
|
self.config.max_seq_len, |
|
causal=self.is_causal, |
|
alibi=self.alibi, |
|
alibi_bias_max=self.alibi_bias_max) |
|
self._attn_bias_initialized = True |
|
|
|
|
|
|
|
if self.attn_impl == 'flash': |
|
return self.attn_bias, attention_mask |
|
|
|
attn_bias = self.attn_bias |
|
|
|
|
|
if self.prefix_lm: |
|
assert isinstance(attn_bias, torch.Tensor) |
|
assert isinstance(prefix_mask, torch.Tensor) |
|
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) |
|
|
|
|
|
if self.attn_uses_sequence_id and sequence_id is not None: |
|
assert isinstance(attn_bias, torch.Tensor) |
|
attn_bias = self._apply_sequence_id(attn_bias, sequence_id) |
|
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
s_k = attention_mask.shape[-1] |
|
if attn_bias is None: |
|
attn_bias = torch.zeros((1, 1, 1, s_k), |
|
device=device, |
|
dtype=dtype) |
|
else: |
|
attn_bias = attn_bias[:, :, :, -s_k:] |
|
if prefix_mask is not None and (attention_mask.shape != |
|
prefix_mask.shape): |
|
raise ValueError( |
|
f'attention_mask shape={attention_mask.shape} ' +\ |
|
f'and prefix_mask shape={prefix_mask.shape} are not equal.' |
|
) |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill( |
|
~attention_mask.view(-1, 1, 1, s_k), min_val) |
|
|
|
return attn_bias, None |
|
|
|
def _apply_prefix_mask(self, attn_bias: torch.Tensor, |
|
prefix_mask: torch.Tensor): |
|
s_k, s_q = attn_bias.shape[-2:] |
|
if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len): |
|
raise ValueError( |
|
'attn_bias does not match the expected shape. ' +\ |
|
f'The last two dimensions should both be {self.config.max_length} ' +\ |
|
f'but are {s_k} and {s_q}.' |
|
) |
|
seq_len = prefix_mask.shape[-1] |
|
if seq_len > self.config.max_seq_len: |
|
raise ValueError( |
|
f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}' |
|
) |
|
|
|
|
|
attn_bias = attn_bias[..., :seq_len, :seq_len] |
|
|
|
|
|
|
|
causal = torch.tril( |
|
torch.ones((seq_len, seq_len), |
|
dtype=torch.bool, |
|
device=prefix_mask.device)).view(1, 1, seq_len, seq_len) |
|
prefix = prefix_mask.view(-1, 1, 1, seq_len) |
|
cannot_attend = ~torch.logical_or(causal, prefix.bool()) |
|
|
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) |
|
|
|
return attn_bias |
|
|
|
def _apply_sequence_id(self, attn_bias: torch.Tensor, |
|
sequence_id: torch.LongTensor): |
|
seq_len = sequence_id.shape[-1] |
|
if seq_len > self.config.max_seq_len: |
|
raise ValueError( |
|
f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}' |
|
) |
|
|
|
|
|
attn_bias = attn_bias[..., :seq_len, :seq_len] |
|
|
|
|
|
|
|
cannot_attend = torch.logical_not( |
|
torch.eq(sequence_id.view(-1, seq_len, 1), |
|
sequence_id.view(-1, 1, seq_len))).unsqueeze(1) |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) |
|
|
|
return attn_bias |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
labels: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
use_cache: Optional[bool] = None): |
|
return_dict = return_dict if return_dict is not None else self.config.return_dict |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
raise NotImplementedError( |
|
'return_dict False is not implemented yet for ReplitLM') |
|
if output_attentions: |
|
raise NotImplementedError( |
|
'output_attentions is not implemented yet for ReplitLM') |
|
|
|
if attention_mask is not None and attention_mask[:, 0].sum( |
|
) != attention_mask.shape[0] and self.training: |
|
raise NotImplementedError( |
|
'ReplitLM does not support training with left padding.') |
|
|
|
if self.prefix_lm and prefix_mask is None: |
|
raise ValueError( |
|
'prefix_mask is a required argument when ReplitLM is configured with prefix_lm=True.' |
|
) |
|
|
|
if self.training: |
|
if self.attn_uses_sequence_id and sequence_id is None: |
|
raise ValueError( |
|
'sequence_id is a required argument when ReplitLM is configured with attn_uses_sequence_id=True ' +\ |
|
'and the model is in train mode.' |
|
) |
|
elif (self.attn_uses_sequence_id is False) and (sequence_id |
|
is not None): |
|
warnings.warn( |
|
'ReplitLM received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' +\ |
|
'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.' |
|
) |
|
|
|
S = input_ids.size(1) |
|
|
|
assert ( |
|
S <= self.config.max_seq_len |
|
), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' |
|
|
|
tok_emb = self.transformer.wte(input_ids) |
|
if self.alibi: |
|
x = tok_emb |
|
else: |
|
past_position = 0 |
|
if past_key_values is not None: |
|
if len(past_key_values) != self.config.n_layers: |
|
raise ValueError( |
|
f'past_key_values must provide a past_key_value for each attention ' +\ |
|
f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).' |
|
) |
|
|
|
|
|
past_position = past_key_values[0][0].size(1) |
|
|
|
if S + past_position > self.config.max_seq_len: |
|
raise ValueError( |
|
f'Cannot forward input with past sequence length {past_position} and current sequence length ' |
|
f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.' |
|
) |
|
pos = torch.arange(past_position, |
|
S + past_position, |
|
dtype=torch.long, |
|
device=input_ids.device).unsqueeze(0) |
|
if attention_mask is not None: |
|
|
|
pos = torch.clamp(pos - torch.cumsum( |
|
(~attention_mask).to(torch.int32), dim=1)[:, |
|
past_position:], |
|
min=0) |
|
|
|
pos_emb = self.transformer.wpe(pos) |
|
x = tok_emb + pos_emb |
|
|
|
if self.embedding_fraction == 1: |
|
x = self.transformer.emb_drop(x) |
|
else: |
|
|
|
x_shrunk = (x * self.embedding_fraction) + ( |
|
x.detach() * (1 - self.embedding_fraction)) |
|
assert isinstance(self.transformer.emb_drop, nn.Module) |
|
x = self.transformer.emb_drop(x_shrunk) |
|
|
|
attn_bias, attention_mask = self._attn_bias( |
|
device=x.device, |
|
dtype=x.dtype, |
|
attention_mask=attention_mask, |
|
prefix_mask=prefix_mask, |
|
sequence_id=sequence_id) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = [() for _ in range(self.config.n_layers) |
|
] |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
for b_idx, block in enumerate(self.transformer.blocks): |
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states = all_hidden_states + (x,) |
|
past_key_value = past_key_values[ |
|
b_idx] if past_key_values is not None else None |
|
x, past_key_value = block(x, |
|
past_key_value=past_key_value, |
|
attn_bias=attn_bias, |
|
attention_mask=attention_mask, |
|
is_causal=self.is_causal) |
|
if past_key_values is not None: |
|
past_key_values[b_idx] = past_key_value |
|
|
|
x = self.transformer.ln_f(x) |
|
|
|
|
|
assert isinstance(self.transformer.wte, nn.Module) |
|
assert isinstance(self.transformer.wte.weight, torch.Tensor) |
|
logits = F.linear(x, self.transformer.wte.weight, None) |
|
|
|
if self.logit_scale is not None: |
|
if self.logit_scale == 0: |
|
warnings.warn( |
|
f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.' |
|
) |
|
logits *= self.logit_scale |
|
|
|
loss = None |
|
if labels is not None: |
|
targets = torch.roll(labels, shifts=-1) |
|
targets[:, -1] = -100 |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), |
|
targets.view(-1)) |
|
|
|
return CausalLMOutputWithPast(logits=logits, |
|
loss=loss, |
|
past_key_values=past_key_values, |
|
hidden_states=all_hidden_states) |
|
|
|
|
|
def param_init_fn(self, module): |
|
init_fn_name = self.config.param_init_fn |
|
if self.config.verbose > 1: |
|
warnings.warn(f'Using {init_fn_name} initialization.') |
|
MODEL_INIT_REGISTRY[init_fn_name](module=module, |
|
**self.config.to_dict()) |
|
|
|
|
|
def fsdp_wrap_fn(self, module): |
|
return isinstance(module, GPTBlock) |
|
|
|
|
|
def activation_checkpointing_fn(self, module): |
|
return isinstance(module, GPTBlock) |
|
|
|
def prepare_inputs_for_generation(self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
**kwargs): |
|
if inputs_embeds is not None: |
|
raise NotImplementedError( |
|
'inputs_embeds is not implemented for ReplitLM yet') |
|
|
|
attention_mask = kwargs['attention_mask'].bool() |
|
if attention_mask[:, -1].sum() != attention_mask.shape[0]: |
|
raise NotImplementedError( |
|
'ReplitLM does not support generation with right padding.') |
|
|
|
if self.attn_uses_sequence_id and self.training: |
|
sequence_id = torch.zeros_like(input_ids[:1]) |
|
else: |
|
sequence_id = None |
|
|
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
if self.prefix_lm: |
|
|
|
prefix_mask = torch.ones_like(attention_mask) |
|
|
|
if kwargs.get('use_cache') == False: |
|
raise NotImplementedError( |
|
'ReplitLM with prefix_lm=True does not support use_cache=False.' |
|
) |
|
else: |
|
prefix_mask = None |
|
|
|
return { |
|
'input_ids': input_ids, |
|
'attention_mask': attention_mask, |
|
'prefix_mask': prefix_mask, |
|
'sequence_id': sequence_id, |
|
'past_key_values': past_key_values, |
|
'use_cache': kwargs.get('use_cache', True), |
|
} |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
"""Used by HuggingFace generate when using beam search with kv-caching. |
|
|
|
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 |
|
for an example in transformers. |
|
""" |
|
reordered_past = [] |
|
for layer_past in past_key_values: |
|
reordered_past += [ |
|
tuple( |
|
past_state.index_select(0, beam_idx) |
|
for past_state in layer_past) |
|
] |
|
return reordered_past |
|
|