|
--- |
|
license: other |
|
base_model: nvidia/mit-b0 |
|
tags: |
|
- vision |
|
- image-segmentation |
|
- generated_from_trainer |
|
model-index: |
|
- name: segformer-b0-finetuned-segments-SixrayKnife8-21-2024_saad5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-b0-finetuned-segments-SixrayKnife8-21-2024_saad5 |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixraygunTest dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2720 |
|
- Mean Iou: 0.8171 |
|
- Mean Accuracy: 0.9114 |
|
- Overall Accuracy: 0.9868 |
|
- Accuracy Bkg: 0.9925 |
|
- Accuracy Knife: 0.8345 |
|
- Accuracy Gun: 0.9072 |
|
- Iou Bkg: 0.9878 |
|
- Iou Knife: 0.7337 |
|
- Iou Gun: 0.7298 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 20 |
|
- eval_batch_size: 20 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bkg | Accuracy Knife | Accuracy Gun | Iou Bkg | Iou Knife | Iou Gun | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:--------------:|:------------:|:-------:|:---------:|:-------:| |
|
| 0.2986 | 5.0 | 20 | 0.2833 | 0.8180 | 0.9092 | 0.9869 | 0.9928 | 0.8290 | 0.9057 | 0.9879 | 0.7362 | 0.7299 | |
|
| 0.2801 | 10.0 | 40 | 0.2780 | 0.8141 | 0.9117 | 0.9864 | 0.9921 | 0.8366 | 0.9063 | 0.9875 | 0.7281 | 0.7268 | |
|
| 0.2908 | 15.0 | 60 | 0.2739 | 0.8178 | 0.9075 | 0.9869 | 0.9930 | 0.8289 | 0.9005 | 0.9880 | 0.7332 | 0.7321 | |
|
| 0.2928 | 20.0 | 80 | 0.2720 | 0.8171 | 0.9114 | 0.9868 | 0.9925 | 0.8345 | 0.9072 | 0.9878 | 0.7337 | 0.7298 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|