saad7489's picture
End of training
b0e7d75 verified
---
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-SixrayKnife8-21-2024_saad5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-SixrayKnife8-21-2024_saad5
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixraygunTest dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2720
- Mean Iou: 0.8171
- Mean Accuracy: 0.9114
- Overall Accuracy: 0.9868
- Accuracy Bkg: 0.9925
- Accuracy Knife: 0.8345
- Accuracy Gun: 0.9072
- Iou Bkg: 0.9878
- Iou Knife: 0.7337
- Iou Gun: 0.7298
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bkg | Accuracy Knife | Accuracy Gun | Iou Bkg | Iou Knife | Iou Gun |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:--------------:|:------------:|:-------:|:---------:|:-------:|
| 0.2986 | 5.0 | 20 | 0.2833 | 0.8180 | 0.9092 | 0.9869 | 0.9928 | 0.8290 | 0.9057 | 0.9879 | 0.7362 | 0.7299 |
| 0.2801 | 10.0 | 40 | 0.2780 | 0.8141 | 0.9117 | 0.9864 | 0.9921 | 0.8366 | 0.9063 | 0.9875 | 0.7281 | 0.7268 |
| 0.2908 | 15.0 | 60 | 0.2739 | 0.8178 | 0.9075 | 0.9869 | 0.9930 | 0.8289 | 0.9005 | 0.9880 | 0.7332 | 0.7321 |
| 0.2928 | 20.0 | 80 | 0.2720 | 0.8171 | 0.9114 | 0.9868 | 0.9925 | 0.8345 | 0.9072 | 0.9878 | 0.7337 | 0.7298 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1