xsum_1677_bart-base / README.md
ryusangwon's picture
Model save
6061ee1 verified
|
raw
history blame
4.68 kB
metadata
license: apache-2.0
base_model: facebook/bart-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: xsum_1677_bart-base
    results: []

xsum_1677_bart-base

This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6469
  • Rouge1: 0.3879
  • Rouge2: 0.1787
  • Rougel: 0.3238
  • Rougelsum: 0.3238
  • Gen Len: 19.6644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.8336 0.31 500 0.7274 0.3493 0.139 0.2847 0.2847 19.511
0.7963 0.63 1000 0.6994 0.3637 0.1506 0.2977 0.2976 19.6179
0.7543 0.94 1500 0.6876 0.365 0.1531 0.2999 0.2999 19.5356
0.7461 1.25 2000 0.6795 0.3709 0.1584 0.3052 0.3051 19.6224
0.7193 1.57 2500 0.6739 0.3684 0.1593 0.3048 0.3047 19.5721
0.7225 1.88 3000 0.6666 0.371 0.16 0.3063 0.3063 19.5672
0.6779 2.2 3500 0.6660 0.3745 0.1632 0.31 0.31 19.5619
0.673 2.51 4000 0.6618 0.3763 0.1653 0.3117 0.3117 19.6738
0.6848 2.82 4500 0.6578 0.3803 0.168 0.3145 0.3145 19.6308
0.6526 3.14 5000 0.6581 0.3803 0.1679 0.3141 0.3141 19.6503
0.6497 3.45 5500 0.6555 0.3776 0.1681 0.3132 0.3133 19.643
0.6483 3.76 6000 0.6520 0.3803 0.17 0.3153 0.3152 19.6666
0.6249 4.08 6500 0.6535 0.383 0.1736 0.3186 0.3185 19.6371
0.628 4.39 7000 0.6531 0.3825 0.1728 0.3181 0.318 19.6159
0.6288 4.7 7500 0.6495 0.3827 0.1727 0.3181 0.3181 19.6695
0.5921 5.02 8000 0.6509 0.3825 0.173 0.318 0.318 19.6447
0.6003 5.33 8500 0.6513 0.3833 0.1742 0.3198 0.3197 19.6866
0.5922 5.65 9000 0.6482 0.3837 0.1737 0.3195 0.3195 19.719
0.5878 5.96 9500 0.6483 0.3824 0.1737 0.3185 0.3185 19.6156
0.5646 6.27 10000 0.6503 0.3851 0.1754 0.3203 0.3204 19.6693
0.5753 6.59 10500 0.6473 0.3855 0.1761 0.3206 0.3206 19.6873
0.579 6.9 11000 0.6467 0.3861 0.1769 0.3223 0.3223 19.6635
0.5865 7.21 11500 0.6480 0.3862 0.176 0.3213 0.3212 19.7016
0.5746 7.53 12000 0.6480 0.3878 0.1785 0.3235 0.3236 19.6531
0.5678 7.84 12500 0.6460 0.3868 0.1776 0.3221 0.322 19.7039
0.5584 8.15 13000 0.6485 0.3875 0.178 0.3233 0.3233 19.6565
0.5484 8.47 13500 0.6477 0.3867 0.1777 0.3223 0.3224 19.6937
0.558 8.78 14000 0.6468 0.3873 0.1781 0.323 0.323 19.6823
0.5482 9.1 14500 0.6475 0.3878 0.1787 0.3231 0.3232 19.6896
0.5551 9.41 15000 0.6475 0.388 0.1783 0.3238 0.3237 19.666
0.5488 9.72 15500 0.6469 0.3879 0.1787 0.3238 0.3238 19.6644

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1