TADBot / FER /models /mobilefacenet.py
ryefoxlime's picture
Restructured the project files
0e084be
raw
history blame
7.43 kB
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout2d, Dropout, AvgPool2d, \
MaxPool2d, AdaptiveAvgPool2d, Sequential, Module, Parameter
import torch.nn.functional as F
import torch
import torch.nn as nn
from collections import namedtuple
import math
import pdb
################################## Original Arcface Model #############################################################
######## ccc#######################
class Flatten(Module):
def forward(self, input):
return input.view(input.size(0), -1)
################################## MobileFaceNet #############################################################
class Conv_block(Module):
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
super(Conv_block, self).__init__()
self.conv = Conv2d(in_c, out_channels=out_c, kernel_size=kernel, groups=groups, stride=stride, padding=padding,
bias=False)
self.bn = BatchNorm2d(out_c)
self.prelu = PReLU(out_c)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.prelu(x)
return x
class Linear_block(Module):
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
super(Linear_block, self).__init__()
self.conv = Conv2d(in_c, out_channels=out_c, kernel_size=kernel, groups=groups, stride=stride, padding=padding,
bias=False)
self.bn = BatchNorm2d(out_c)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class Depth_Wise(Module):
def __init__(self, in_c, out_c, residual=False, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=1):
super(Depth_Wise, self).__init__()
self.conv = Conv_block(in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1))
self.conv_dw = Conv_block(groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride)
self.project = Linear_block(groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1))
self.residual = residual
def forward(self, x):
if self.residual:
short_cut = x
x = self.conv(x)
x = self.conv_dw(x)
x = self.project(x)
if self.residual:
output = short_cut + x
else:
output = x
return output
class Residual(Module):
def __init__(self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1)):
super(Residual, self).__init__()
modules = []
for _ in range(num_block):
modules.append(
Depth_Wise(c, c, residual=True, kernel=kernel, padding=padding, stride=stride, groups=groups))
self.model = Sequential(*modules)
def forward(self, x):
return self.model(x)
class GNAP(Module):
def __init__(self, embedding_size):
super(GNAP, self).__init__()
assert embedding_size == 512
self.bn1 = BatchNorm2d(512, affine=False)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.bn2 = BatchNorm1d(512, affine=False)
def forward(self, x):
x = self.bn1(x)
x_norm = torch.norm(x, 2, 1, True)
x_norm_mean = torch.mean(x_norm)
weight = x_norm_mean / x_norm
x = x * weight
x = self.pool(x)
x = x.view(x.shape[0], -1)
feature = self.bn2(x)
return feature
class GDC(Module):
def __init__(self, embedding_size):
super(GDC, self).__init__()
self.conv_6_dw = Linear_block(512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0))
self.conv_6_flatten = Flatten()
self.linear = Linear(512, embedding_size, bias=False)
# self.bn = BatchNorm1d(embedding_size, affine=False)
self.bn = BatchNorm1d(embedding_size)
def forward(self, x):
x = self.conv_6_dw(x) #### [B, 512, 1, 1]
x = self.conv_6_flatten(x) #### [B, 512]
x = self.linear(x) #### [B, 136]
x = self.bn(x)
return x
class MobileFaceNet(Module):
def __init__(self, input_size, embedding_size=512, output_name="GDC"):
super(MobileFaceNet, self).__init__()
assert output_name in ["GNAP", 'GDC']
assert input_size[0] in [112]
self.conv1 = Conv_block(3, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1))
self.conv2_dw = Conv_block(64, 64, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
self.conv_23 = Depth_Wise(64, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128)
self.conv_3 = Residual(64, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv_34 = Depth_Wise(64, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256)
self.conv_4 = Residual(128, num_block=6, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv_45 = Depth_Wise(128, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512)
self.conv_5 = Residual(128, num_block=2, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv_6_sep = Conv_block(128, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0))
if output_name == "GNAP":
self.output_layer = GNAP(512)
else:
self.output_layer = GDC(embedding_size)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
out = self.conv1(x)
# print(out.shape)
out = self.conv2_dw(out)
# print(out.shape)
out = self.conv_23(out)
# print(out.shape)
out3 = self.conv_3(out)
# print(out.shape)
out = self.conv_34(out3)
# print(out.shape)
out4 = self.conv_4(out) # [128, 14, 14]
# print(out.shape)
out = self.conv_45(out4) # [128, 7, 7]
# print(out.shape)
out = self.conv_5(out) # [128, 7, 7]
# print(out.shape)
conv_features = self.conv_6_sep(out) ##### [B, 512, 7, 7]
out = self.output_layer(conv_features) ##### [B, 136]
return out3, out4, conv_features
# model = MobileFaceNet([112, 112],136)
# input = torch.ones(8,3,112,112).cuda()
# model = model.cuda()
# x = model(input)
# import numpy as np
# parameters = model.parameters()
# parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
# print('Total Parameters: %.3fM' % parameters)
#
#
# from ptflops import get_model_complexity_info
# macs, params = get_model_complexity_info(model, (3, 112, 112), as_strings=True,
# print_per_layer_stat=True, verbose=True)
# print('{:<30} {:<8}'.format('Computational complexity: ', macs))
# print('{:<30} {:<8}'.format('Number of parameters: ', params))
#
# print(x.shape)