Update README.md
Browse files
README.md
CHANGED
@@ -62,18 +62,49 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
62 |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
63 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
# Generate output text
|
70 |
-
outputs = model.generate(**inputs, max_length=50)
|
71 |
|
72 |
-
# Decode and print the generated text
|
73 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
74 |
-
print(generated_text)
|
75 |
```
|
|
|
76 |
|
|
|
|
|
|
|
77 |
### Model Features
|
78 |
|
79 |
- **Text Generation**: This model is fine-tuned to generate coherent and contextually accurate text based on the provided input.
|
|
|
62 |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
63 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
64 |
|
65 |
+
# Initialize the tokenizer (adjust the model name as needed)
|
66 |
+
# Define EOS token for terminating the sequences
|
67 |
+
EOS_TOKEN = tokenizer.eos_token
|
68 |
+
|
69 |
+
# Define Alpaca-style prompt template
|
70 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
71 |
+
|
72 |
+
### Instruction:
|
73 |
+
{}
|
74 |
+
|
75 |
+
### Input:
|
76 |
+
{}
|
77 |
+
|
78 |
+
### Response:
|
79 |
+
"""
|
80 |
+
|
81 |
+
# Format the prompt without the response part
|
82 |
+
prompt = alpaca_prompt.format(
|
83 |
+
"Provide the SQL query",
|
84 |
+
"Seleziona tutte le colonne della tabella table1 dove la colonna anni è uguale a 2020"
|
85 |
+
)
|
86 |
+
# Tokenize the prompt and generate text
|
87 |
+
inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
88 |
+
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)
|
89 |
+
|
90 |
+
# Decode the generated text
|
91 |
+
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
92 |
+
|
93 |
+
# Extract the generated response only (remove the prompt part)
|
94 |
+
response_start = generated_text.find("### Response:") + len("### Response:\n")
|
95 |
+
response = generated_text[response_start:].strip()
|
96 |
+
|
97 |
+
# Print the response (excluding the prompt)
|
98 |
+
print(response)
|
99 |
+
|
100 |
|
|
|
|
|
101 |
|
|
|
|
|
|
|
102 |
```
|
103 |
+
and the answer is
|
104 |
|
105 |
+
```
|
106 |
+
SELECT * FROM table1 WHERE anni = 2020
|
107 |
+
```
|
108 |
### Model Features
|
109 |
|
110 |
- **Text Generation**: This model is fine-tuned to generate coherent and contextually accurate text based on the provided input.
|