CodeJackR
commited on
Commit
·
c78d04e
1
Parent(s):
f9b3f94
Input image as image
Browse files- handler.py +23 -36
handler.py
CHANGED
|
@@ -9,6 +9,9 @@ from transformers import SamModel, SamProcessor
|
|
| 9 |
from typing import Dict, List, Any
|
| 10 |
import torch.nn.functional as F
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
class EndpointHandler():
|
| 13 |
def __init__(self, path=""):
|
| 14 |
"""
|
|
@@ -17,51 +20,29 @@ class EndpointHandler():
|
|
| 17 |
"""
|
| 18 |
try:
|
| 19 |
# Load the model and processor from the local path
|
| 20 |
-
self.model = SamModel.from_pretrained(path)
|
| 21 |
self.processor = SamProcessor.from_pretrained(path)
|
| 22 |
except Exception as e:
|
| 23 |
# Fallback to loading from a known SAM model if local loading fails
|
| 24 |
print(f"Failed to load from local path: {e}")
|
| 25 |
print("Attempting to load from facebook/sam-vit-base")
|
| 26 |
-
self.model = SamModel.from_pretrained("facebook/sam-vit-base")
|
| 27 |
self.processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
| 28 |
|
| 29 |
-
def __call__(self, data:
|
| 30 |
"""
|
| 31 |
Called on every HTTP request.
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
"""
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
image_data = image_data.split(",", 1)[1]
|
| 42 |
-
# Base64 encoded image
|
| 43 |
-
image_bytes = base64.b64decode(image_data)
|
| 44 |
-
elif isinstance(data["inputs"], dict) and "image" in data["inputs"]:
|
| 45 |
-
# Nested structure with image field
|
| 46 |
-
image_data = data["inputs"]["image"]
|
| 47 |
-
if image_data.startswith("data:"):
|
| 48 |
-
# Strip data URL prefix
|
| 49 |
-
image_data = image_data.split(",", 1)[1]
|
| 50 |
-
image_bytes = base64.b64decode(image_data)
|
| 51 |
-
else:
|
| 52 |
-
raise ValueError("Invalid input format. Expected base64 encoded image string.")
|
| 53 |
-
elif "image" in data:
|
| 54 |
-
# Direct image field
|
| 55 |
-
image_data = data["image"]
|
| 56 |
-
if image_data.startswith("data:"):
|
| 57 |
-
# Strip data URL prefix
|
| 58 |
-
image_data = image_data.split(",", 1)[1]
|
| 59 |
-
image_bytes = base64.b64decode(image_data)
|
| 60 |
-
else:
|
| 61 |
-
raise ValueError("No image found in request. Expected 'inputs' or 'image' field with base64 encoded image.")
|
| 62 |
-
|
| 63 |
-
# Process the image
|
| 64 |
-
img = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 65 |
|
| 66 |
# SAM requires input prompts, so we'll generate a center point prompt
|
| 67 |
height, width = img.size[1], img.size[0] # PIL returns (width, height)
|
|
@@ -120,8 +101,14 @@ class EndpointHandler():
|
|
| 120 |
out.seek(0)
|
| 121 |
mask_base64 = base64.b64encode(out.getvalue()).decode('utf-8')
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
# Return in the expected format
|
| 124 |
-
return
|
| 125 |
|
| 126 |
def main():
|
| 127 |
# Hardcoded input and output paths
|
|
|
|
| 9 |
from typing import Dict, List, Any
|
| 10 |
import torch.nn.functional as F
|
| 11 |
|
| 12 |
+
# set device
|
| 13 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 14 |
+
|
| 15 |
class EndpointHandler():
|
| 16 |
def __init__(self, path=""):
|
| 17 |
"""
|
|
|
|
| 20 |
"""
|
| 21 |
try:
|
| 22 |
# Load the model and processor from the local path
|
| 23 |
+
self.model = SamModel.from_pretrained(path).to(device)
|
| 24 |
self.processor = SamProcessor.from_pretrained(path)
|
| 25 |
except Exception as e:
|
| 26 |
# Fallback to loading from a known SAM model if local loading fails
|
| 27 |
print(f"Failed to load from local path: {e}")
|
| 28 |
print("Attempting to load from facebook/sam-vit-base")
|
| 29 |
+
self.model = SamModel.from_pretrained("facebook/sam-vit-base").to(device)
|
| 30 |
self.processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
| 31 |
|
| 32 |
+
def __call__(self, data: Any) -> Any:
|
| 33 |
"""
|
| 34 |
Called on every HTTP request.
|
| 35 |
+
Args:
|
| 36 |
+
data (:obj:):
|
| 37 |
+
includes the input data and the parameters for the inference.
|
| 38 |
"""
|
| 39 |
+
inputs = data.pop("inputs", data)
|
| 40 |
+
parameters = data.pop("parameters", {})
|
| 41 |
+
|
| 42 |
+
raw_images = [Image.open(io.BytesIO(_img)) for _img in inputs]
|
| 43 |
+
|
| 44 |
+
# img = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 45 |
+
img = raw_images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
# SAM requires input prompts, so we'll generate a center point prompt
|
| 48 |
height, width = img.size[1], img.size[0] # PIL returns (width, height)
|
|
|
|
| 101 |
out.seek(0)
|
| 102 |
mask_base64 = base64.b64encode(out.getvalue()).decode('utf-8')
|
| 103 |
|
| 104 |
+
# Decode the returned mask and save
|
| 105 |
+
mask_bytes = base64.b64decode(mask_base64)
|
| 106 |
+
mask_img = Image.open(io.BytesIO(mask_bytes)).convert("RGB")
|
| 107 |
+
# mask_img.save(output_path, format="JPEG")
|
| 108 |
+
# print(f"Wrote mask to {output_path}")
|
| 109 |
+
|
| 110 |
# Return in the expected format
|
| 111 |
+
return mask_img
|
| 112 |
|
| 113 |
def main():
|
| 114 |
# Hardcoded input and output paths
|