|
|
|
|
|
|
|
|
|
@@ -17,10 +17,10 @@ import json |
|
import os |
|
import shutil |
|
import warnings |
|
- |
|
+from typing import List |
|
import torch |
|
|
|
-from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast |
|
+from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast, GenerationConfig |
|
from transformers.convert_slow_tokenizer import TikTokenConverter |
|
|
|
|
|
@@ -85,8 +85,12 @@ NUM_SHARDS = { |
|
"65B": 8, |
|
"70B": 8, |
|
"70Bf": 8, |
|
+ "405B": 8, |
|
+ "405B-MP16": 16, |
|
} |
|
|
|
+CONTEXT_LENGTH_FOR_VERSION = {"3.1": 131072, "3": 8192, "2": 4096, "1": 2048} |
|
+ |
|
|
|
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256): |
|
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) |
|
@@ -107,9 +111,10 @@ def write_model( |
|
input_base_path, |
|
model_size=None, |
|
safe_serialization=True, |
|
- llama_version=1, |
|
+ llama_version="1", |
|
vocab_size=None, |
|
num_shards=None, |
|
+ instruct=False, |
|
): |
|
os.makedirs(model_path, exist_ok=True) |
|
tmp_model_path = os.path.join(model_path, "tmp") |
|
@@ -125,18 +130,11 @@ def write_model( |
|
dims_per_head = dim // n_heads |
|
base = params.get("rope_theta", 10000.0) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) |
|
- if base > 10000.0 and llama_version != 3: |
|
+ if base > 10000.0 and float(llama_version) < 3: |
|
max_position_embeddings = 16384 |
|
else: |
|
- # Depending on the Llama version, the default max_position_embeddings has different values. |
|
- if llama_version == 1: |
|
- max_position_embeddings = 2048 |
|
- elif llama_version == 2: |
|
- max_position_embeddings = 4096 |
|
- elif llama_version == 3: |
|
- max_position_embeddings = 8192 |
|
- |
|
- vocab_size = vocab_size if vocab_size is not None else 32000 |
|
+ max_position_embeddings = CONTEXT_LENGTH_FOR_VERSION[llama_version] |
|
+ |
|
if params.get("n_kv_heads", None) is not None: |
|
num_key_value_heads = params["n_kv_heads"] # for GQA / MQA |
|
num_key_value_heads_per_shard = num_key_value_heads // num_shards |
|
@@ -144,8 +142,7 @@ def write_model( |
|
else: # compatibility with other checkpoints |
|
num_key_value_heads = n_heads |
|
num_key_value_heads_per_shard = n_heads_per_shard |
|
- key_value_dim = dims_per_head * num_key_value_heads |
|
- print(num_shards, num_key_value_heads, num_key_value_heads_per_shard, key_value_dim) |
|
+ key_value_dim = dim |
|
|
|
# permute for sliced rotary |
|
def permute(w, n_heads, dim1=dim, dim2=dim): |
|
@@ -159,11 +156,9 @@ def write_model( |
|
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") |
|
else: |
|
# Sharded |
|
- loaded = [ |
|
- torch.load(os.path.join(input_base_path, file), map_location="cpu") |
|
- for file in os.listdir(input_base_path) |
|
- if file.endswith(".pth") |
|
- ] |
|
+ checkpoint_list = sorted([file for file in os.listdir(input_base_path) if file.endswith(".pth")]) |
|
+ print("Loading in order:", checkpoint_list) |
|
+ loaded = [torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in checkpoint_list] |
|
param_count = 0 |
|
index_dict = {"weight_map": {}} |
|
for layer_i in range(n_layers): |
|
@@ -263,7 +258,7 @@ def write_model( |
|
"lm_head.weight": loaded["output.weight"], |
|
} |
|
else: |
|
- concat_dim = 0 if llama_version == 3 else 1 |
|
+ concat_dim = 0 if llama_version in ['3', '3.1'] else 1 |
|
state_dict = { |
|
"model.norm.weight": loaded[0]["norm.weight"], |
|
"model.embed_tokens.weight": torch.cat( |
|
@@ -282,6 +277,18 @@ def write_model( |
|
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) |
|
ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 |
|
multiple_of = params["multiple_of"] if "multiple_of" in params else 256 |
|
+ |
|
+ if llama_version in ['3', '3.1']: |
|
+ bos_token_id = 128000 |
|
+ |
|
+ if instruct: |
|
+ eos_token_id = [128001, 128009] |
|
+ else: |
|
+ eos_token_id = 128001 |
|
+ else: |
|
+ bos_token_id = 1 |
|
+ eos_token_id = 2 |
|
+ |
|
config = LlamaConfig( |
|
hidden_size=dim, |
|
intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of), |
|
@@ -292,11 +299,21 @@ def write_model( |
|
vocab_size=vocab_size, |
|
rope_theta=base, |
|
max_position_embeddings=max_position_embeddings, |
|
- bos_token_id=128000 if llama_version == 3 else 1, |
|
- eos_token_id=128001 if llama_version == 3 else 2, |
|
+ bos_token_id=bos_token_id, |
|
+ eos_token_id=eos_token_id, |
|
) |
|
config.save_pretrained(tmp_model_path) |
|
|
|
+ if instruct: |
|
+ generation_config = GenerationConfig( |
|
+ do_sample=True, |
|
+ temperature=0.6, |
|
+ top_p=0.9, |
|
+ bos_token_id=bos_token_id, |
|
+ eos_token_id=eos_token_id, |
|
+ ) |
|
+ generation_config.save_pretrained(tmp_model_path) |
|
+ |
|
# Make space so we can load the model properly now. |
|
del state_dict |
|
del loaded |
|
@@ -313,7 +330,7 @@ def write_model( |
|
|
|
|
|
class Llama3Converter(TikTokenConverter): |
|
- def __init__(self, vocab_file, num_reserved_special_tokens=256, **kwargs): |
|
+ def __init__(self, vocab_file, special_tokens=None, instruct=False, model_max_length=None, **kwargs): |
|
super().__init__(vocab_file, **kwargs) |
|
tokenizer = self.converted() |
|
chat_template = ( |
|
@@ -327,34 +344,29 @@ class Llama3Converter(TikTokenConverter): |
|
"{% endfor %}" |
|
"{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}" |
|
) |
|
- num_reserved_special_tokens = 256 |
|
- special_tokens = [ |
|
- "<|begin_of_text|>", |
|
- "<|end_of_text|>", |
|
- "<|reserved_special_token_0|>", |
|
- "<|reserved_special_token_1|>", |
|
- "<|reserved_special_token_2|>", |
|
- "<|reserved_special_token_3|>", |
|
- "<|start_header_id|>", |
|
- "<|end_header_id|>", |
|
- "<|reserved_special_token_4|>", |
|
- "<|eot_id|>", # end of turn |
|
- ] + [f"<|reserved_special_token_{i}|>" for i in range(5, num_reserved_special_tokens - 5)] |
|
tokenizer.add_special_tokens(special_tokens) |
|
|
|
+ print("MODEL MAX LENGTH", model_max_length) |
|
+ |
|
self.tokenizer = PreTrainedTokenizerFast( |
|
tokenizer_object=tokenizer, |
|
bos_token="<|begin_of_text|>", |
|
- eos_token="<|end_of_text|>", |
|
+ eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>", |
|
chat_template=chat_template, |
|
model_input_names=["input_ids", "attention_mask"], |
|
+ model_max_length=model_max_length, |
|
) |
|
|
|
|
|
-def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2): |
|
+def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version="2", special_tokens=None, instruct=False): |
|
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast |
|
- if llama_version == 3: |
|
- tokenizer = Llama3Converter(input_tokenizer_path).tokenizer |
|
+ if llama_version in ["3", "3.1"]: |
|
+ tokenizer = Llama3Converter( |
|
+ input_tokenizer_path, |
|
+ special_tokens, |
|
+ instruct, |
|
+ model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version] |
|
+ ).tokenizer |
|
else: |
|
tokenizer = tokenizer_class(input_tokenizer_path) |
|
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.") |
|
@@ -362,6 +374,37 @@ def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2): |
|
return tokenizer |
|
|
|
|
|
+DEFAULT_LLAMA_SPECIAL_TOKENS = { |
|
+ "3": [ |
|
+ "<|begin_of_text|>", |
|
+ "<|end_of_text|>", |
|
+ "<|reserved_special_token_0|>", |
|
+ "<|reserved_special_token_1|>", |
|
+ "<|reserved_special_token_2|>", |
|
+ "<|reserved_special_token_3|>", |
|
+ "<|start_header_id|>", |
|
+ "<|end_header_id|>", |
|
+ "<|reserved_special_token_4|>", |
|
+ "<|eot_id|>", # end of turn |
|
+ ] |
|
+ + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)], |
|
+ "3.1": [ |
|
+ "<|begin_of_text|>", |
|
+ "<|end_of_text|>", |
|
+ "<|reserved_special_token_0|>", |
|
+ "<|reserved_special_token_1|>", |
|
+ "<|finetune_right_pad_id|>", |
|
+ "<|reserved_special_token_2|>", |
|
+ "<|start_header_id|>", |
|
+ "<|end_header_id|>", |
|
+ "<|eom_id|>", # end of message |
|
+ "<|eot_id|>", # end of turn |
|
+ "<|python_tag|>", |
|
+ ] |
|
+ + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)], |
|
+} |
|
+ |
|
+ |
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
@@ -383,9 +426,9 @@ def main(): |
|
# Different Llama versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used. |
|
parser.add_argument( |
|
"--llama_version", |
|
- choices=[1, 2, 3], |
|
- default=1, |
|
- type=int, |
|
+ choices=["1", "2", "3", "3.1"], |
|
+ default="1", |
|
+ type=str, |
|
help="Version of the Llama model to convert. Currently supports Llama1 and Llama2. Controls the context size", |
|
) |
|
parser.add_argument( |
|
@@ -394,11 +437,34 @@ def main(): |
|
type=int, |
|
help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth", |
|
) |
|
+ parser.add_argument( |
|
+ "--special_tokens", |
|
+ default=None, |
|
+ type=List[str], |
|
+ help="The list of special tokens that should be added to the model.", |
|
+ ) |
|
+ parser.add_argument( |
|
+ "--instruct", |
|
+ default=False, |
|
+ type=bool, |
|
+ help="Whether the model is an instruct model or not. Will affect special tokens for llama 3.1.", |
|
+ ) |
|
args = parser.parse_args() |
|
if args.model_size is None and args.num_shards is None: |
|
raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`") |
|
+ if args.special_tokens is None: |
|
+ args.special_tokens = DEFAULT_LLAMA_SPECIAL_TOKENS[str(args.llama_version)] |
|
+ |
|
spm_path = os.path.join(args.input_dir, "tokenizer.model") |
|
- vocab_size = len(write_tokenizer(args.output_dir, spm_path, llama_version=args.llama_version)) |
|
+ vocab_size = len( |
|
+ write_tokenizer( |
|
+ args.output_dir, |
|
+ spm_path, |
|
+ llama_version=args.llama_version, |
|
+ special_tokens=args.special_tokens, |
|
+ instruct=args.instruct |
|
+ ) |
|
+ ) |
|
if args.model_size != "tokenizer_only": |
|
write_model( |
|
model_path=args.output_dir, |
|
@@ -408,6 +474,7 @@ def main(): |
|
llama_version=args.llama_version, |
|
vocab_size=vocab_size, |
|
num_shards=args.num_shards, |
|
+ instruct=args.instruct |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -90,6 +90,29 @@ class LlamaRMSNorm(nn.Module): |
|
|
|
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm) |
|
|
|
+def apply_scaling(freqs: torch.Tensor): |
|
+ # Values obtained from grid search |
|
+ scale_factor = 8 |
|
+ low_freq_factor = 1 |
|
+ high_freq_factor = 4 |
|
+ old_context_len = 8192 # original llama3 length |
|
+ |
|
+ low_freq_wavelen = old_context_len / low_freq_factor |
|
+ high_freq_wavelen = old_context_len / high_freq_factor |
|
+ new_freqs = [] |
|
+ for freq in freqs: |
|
+ wavelen = 2 * math.pi / freq |
|
+ if wavelen < high_freq_wavelen: |
|
+ new_freqs.append(freq) |
|
+ elif wavelen > low_freq_wavelen: |
|
+ new_freqs.append(freq / scale_factor) |
|
+ else: |
|
+ assert low_freq_wavelen != high_freq_wavelen |
|
+ smooth = (old_context_len / wavelen - low_freq_factor) / ( |
|
+ high_freq_factor - low_freq_factor |
|
+ ) |
|
+ new_freqs.append((1 - smooth) * freq / scale_factor + smooth * freq) |
|
+ return torch.tensor(new_freqs, dtype=freqs.dtype, device=freqs.device) |
|
|
|
class LlamaRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
@@ -99,6 +122,7 @@ class LlamaRotaryEmbedding(nn.Module): |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
+ inv_freq = apply_scaling(inv_freq) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
# For BC we register cos and sin cached |
|
self.max_seq_len_cached = max_position_embeddings |
|
|