metadata
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_parsigs
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8482521186
- name: NER Recall
type: recall
value: 0.8848066298
- name: NER F Score
type: f_score
value: 0.8661438615
Feature | Description |
---|---|
Name | en_parsigs |
Version | 0.0.0 |
spaCy | >=3.5.0,<3.6.0 |
Default Pipeline | transformer , ner |
Components | transformer , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (6 labels for 1 components)
Component | Labels |
---|---|
ner |
Dosage , Drug , Duration , Form , Frequency , Strength |
Accuracy
Type | Score |
---|---|
ENTS_F |
86.61 |
ENTS_P |
84.83 |
ENTS_R |
88.48 |
TRANSFORMER_LOSS |
5347024.15 |
NER_LOSS |
3459290.82 |