embedding-BOK / README.md
roomnumber103's picture
msg
7324130
metadata
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10501
  - loss:CosineSimilarityLoss
widget:
  - source_sentence: 추운날이니 외출은 자제해주시기 바랍니다.
    sentences:
      - 추운날인데 외출하지마
      - 소·돼지에 대해서만 실시하던 축산물이력제가 1 1일부터 닭·오리·계란까지 확대·시행된다.
      - 광고메일함 비중이 에어비앤비가  높니 트립닷컴이  많니?
  - source_sentence: 샤워기도 수압이 너무 약해서 불편해요.
    sentences:
      - 숙소 내부가 넓고 호스트도 1층에 있어 불편사항에 대한 피드백을 즉시 받으실  있습니다.
      - >-
        그외에 물놀이를 하기위한 준비물들 파라솔 비치의자 어린이비치의자 아이스박스 핸드케리어 비치타월 모레놀이도구 등등 필요한 모든것이
        완벽했습니다.
      - 샤워는 수압이 너무 약해서 불편해요.
  - source_sentence: 조용한 분위기의 방을 구하시면  곳이 최고입니다!
    sentences:
      - 시험을 이번달에 본다고 했니 다음달에 본다고 했니?
      - 조용한 방을 찾는다면, 이곳이 최고예요!
      - 어른들과 만나는 자리에는 어른들보다 늦게 도착하지 말고 일찍 나가 있어라.
  - source_sentence: 발코니쪽 창문은 3개중에 한개만 열수있습니다.
    sentences:
      - 많은 장비를 구매할 필요 없이 즐길  있습니다.
      - 우리는  숙소에서 호바트의 최상의 상태를 유지할  있었습니다.
      - 직장가입자의 급여명세서, 지역가입자의 건강보험 급여통지서를 확인하실  있습니다.
  - source_sentence: 국민 추천으로 ‘금융규제 유연화로 선제적 금융권 지원역량 강화’도 우수 사례로 언급됐다.
    sentences:
      - 국민의 권고에 따라 '유연한 금융규제 등을 통해 선제적으로 금융분야 지원능력 강화' 좋은 사례로 꼽혔습니다.
      - 사진으로 보이는거 보다 숙소는 넓었고요
      - 저는 다음에 대만을 간다면 무조건 재방문  예정입니다!
model-index:
  - name: SentenceTransformer
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.9626619602187976
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.9247880695962829
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.9555167285690431
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.923408354022865
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9556439523907834
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.9235806565450854
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.957361957340705
            name: Pearson Dot
          - type: spearman_dot
            value: 0.9130155209197447
            name: Spearman Dot
          - type: pearson_max
            value: 0.9626619602187976
            name: Pearson Max
          - type: spearman_max
            value: 0.9247880695962829
            name: Spearman Max

SentenceTransformer

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': True}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '국민 추천으로 ‘금융규제 유연화로 선제적 금융권 지원역량 강화’도 우수 사례로 언급됐다.',
    "국민의 권고에 따라 '유연한 금융규제 등을 통해 선제적으로 금융분야 지원능력 강화'도 좋은 사례로 꼽혔습니다.",
    '사진으로 보이는거 보다 숙소는 넓었고요',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9627
spearman_cosine 0.9248
pearson_manhattan 0.9555
spearman_manhattan 0.9234
pearson_euclidean 0.9556
spearman_euclidean 0.9236
pearson_dot 0.9574
spearman_dot 0.913
pearson_max 0.9627
spearman_max 0.9248

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,501 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 5 tokens
    • mean: 20.16 tokens
    • max: 58 tokens
    • min: 6 tokens
    • mean: 19.75 tokens
    • max: 58 tokens
    • min: 0.0
    • mean: 0.44
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    단점을 꼽자면 엘베가 없다는 점 정도? 굳이 단점을 꼽자면 늦은 밤에는 역 근처가 살짝 무섭다는 거? 0.2
    더울 때는 청량음료 말고 물 많이 마셔. 추울 때 손과 발은 내놓지 말자. 0.0
    위치, 시설, 호스팅 모두 만족했습니다. 위치, 시설, 호스팅 모두 만족스러웠습니다. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 7
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 7
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss sts-dev_spearman_max
1.0 329 - 0.9218
1.5198 500 0.0096 -
2.0 658 - 0.9218
3.0 987 - 0.9215
3.0395 1000 0.0064 0.9218
4.0 1316 - 0.9231
4.5593 1500 0.0055 -
5.0 1645 - 0.9231
6.0 1974 - 0.9235
6.0790 2000 0.0045 0.9226
7.0 2303 - 0.9248

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}