|
--- |
|
license: apache-2.0 |
|
base_model: allenai/led-base-16384 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wcep-10 |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: thesis-led-finetuned-on-wcep |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: wcep-10 |
|
type: wcep-10 |
|
config: roberta |
|
split: validation |
|
args: roberta |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 43.4358 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# thesis-led-finetuned-on-wcep |
|
|
|
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the wcep-10 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6816 |
|
- Rouge1: 43.4358 |
|
- Rouge2: 21.8159 |
|
- Rougel: 35.0411 |
|
- Rougelsum: 36.1007 |
|
- Gen Len: 27.2843 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.6843 | 1.0 | 2040 | 1.6753 | 42.8519 | 21.8933 | 35.0226 | 35.9911 | 25.6647 | |
|
| 1.4083 | 2.0 | 4080 | 1.6672 | 43.5166 | 22.0845 | 35.283 | 36.4006 | 26.4098 | |
|
| 1.1981 | 3.0 | 6120 | 1.6816 | 43.4358 | 21.8159 | 35.0411 | 36.1007 | 27.2843 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|