bert-finetune-test / README.md
rohanphadke's picture
rohanphadke/bert-base-cased-tbl-test
7b9d927 verified
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: Training
    results: []

Training

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1474
  • Precision: 0.9421
  • Recall: 0.8978
  • F1: 0.9194
  • Roc Auc: 0.9859
  • Krippendorff Alpha: 0.8754

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6.7e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Roc Auc Krippendorff Alpha
0.3425 1.0 247 0.3340 0.8489 0.7859 0.8162 0.9439 0.7187
0.2554 2.0 494 0.2263 0.8225 0.9183 0.8678 0.9651 0.7865
0.2351 3.0 741 0.1885 0.9087 0.8789 0.8936 0.9765 0.8352
0.1724 4.0 988 0.1892 0.9124 0.8798 0.8958 0.9773 0.8388

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1