|
---
|
|
license: apache-2.0
|
|
---
|
|
# RoboVLMs model card
|
|
|
|
## Introduction
|
|
|
|
This repo contains the pre-trained models through **[RoboVLMs](https://github.com/Robot-VLAs/RoboVLMs)**, which is a unified framework for easily building VLAs from VLMs.
|
|
|
|
We open-source three pre-trained model checkpoints and their configs:
|
|
|
|
- `kosmos_ph_calvin_abcd`: RoboKosMos(KosMos+Policy Head) trained on the CALVIN dataset (split ABCD).
|
|
- `kosmos_ph_calvin_abc`: RoboKosMos(KosMos+Policy Head) trained on the CALVIN dataset (split ABC).
|
|
- `kosmos_ph_oxe-pretrain`: RoboKosMos(KosMos+Policy Head) trained on the OXE-magic-soup dataset.
|
|
|
|
## Usage
|
|
|
|
The model can be used to predict action based on the vision and language input. RoboVLMs supports several VLA structures, multi-view input and various backbones. Taking `kosmos_ph_calvin_abcd` as an example:
|
|
|
|
```python
|
|
import torch
|
|
import json, functools
|
|
from PIL import Image
|
|
from robovlms.train.base_trainer import BaseTrainer
|
|
from robovlms.data.data_utils import preprocess_image
|
|
from robovlms.data.data_utils import get_text_function
|
|
|
|
configs = josn.load(open('configs/kosmos_ph_calvin_abcd.json', 'r'))
|
|
pretrained_path = 'checkpoints/kosmos_ph_calvin_abcd.pt'
|
|
configs['model_load_path'] = pretrained_path
|
|
|
|
model = BaseTrainer.from_checkpoint(configs)
|
|
|
|
image_fn = functools.partial(
|
|
preprocess_image,
|
|
image_processor=model.model.image_processor,
|
|
model_type=configs["model"],
|
|
)
|
|
text_fn = get_text_function(model.model.tokenizer, configs["model"])
|
|
prompt = "Task: pickup the bottle on the table"
|
|
text_tensor, attention_mask = text_preprocess([lang])
|
|
|
|
for step in range(MAX_STEPS):
|
|
|
|
image: Image.Image = get_from_side_camera(...)
|
|
image = image_fn([image]).unsqueeze(0)
|
|
|
|
input_dict["rgb"] = image
|
|
input_dict["text"] = text_tensor
|
|
input_dict['text_mask'] = attention_mask
|
|
|
|
### if wrist camera is available
|
|
wrist_image: Image.Image = get_from_wrist_camera(...)
|
|
wrist_image = image_fn([wrist_image]).unsqueeze(0)
|
|
input_dict["hand_rgb"] = wrist_image
|
|
|
|
action = model.inference_step(input_dict)["action"]
|
|
|
|
# unormalize / reproject the action if necessary
|
|
from robovlms.data.data_utils import unnoramalize_action
|
|
if isinstance(action, tuple):
|
|
action = (
|
|
unnoramalize_action(
|
|
action[0], self.configs["norm_min"], self.configs["norm_max"]
|
|
),
|
|
action[1],
|
|
)
|
|
else:
|
|
action = unnoramalize_action(
|
|
action, self.configs["norm_min"], self.configs["norm_max"]
|
|
)
|
|
```
|
|
|
|
## Evaluation
|
|
|
|
|
|
|
|
|