rnaveensrinivas's picture
End of training
fb9e1b0 verified
|
raw
history blame
2.52 kB
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: Mistral-7B-Instruct-v0.2-GPTQ_retrained_IoV
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-Instruct-v0.2-GPTQ_retrained_IoV
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8239
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 4.1739 | 0.9412 | 4 | 3.4659 |
| 4.0196 | 1.8824 | 8 | 3.3864 |
| 3.2283 | 2.8235 | 12 | 3.2071 |
| 2.0147 | 4.0 | 17 | 2.9738 |
| 2.2299 | 4.9412 | 21 | 2.7751 |
| 2.0711 | 5.8824 | 25 | 2.6203 |
| 1.946 | 6.8235 | 29 | 2.3797 |
| 1.4262 | 8.0 | 34 | 2.0694 |
| 1.6468 | 8.9412 | 38 | 1.8468 |
| 1.5549 | 9.8824 | 42 | 1.5932 |
| 1.4661 | 10.8235 | 46 | 1.3819 |
| 1.1079 | 12.0 | 51 | 1.2555 |
| 1.3114 | 12.9412 | 55 | 1.1306 |
| 1.2436 | 13.8824 | 59 | 1.0515 |
| 1.1965 | 14.8235 | 63 | 0.9581 |
| 0.9269 | 16.0 | 68 | 0.9277 |
| 1.1262 | 16.9412 | 72 | 0.8709 |
| 1.1054 | 17.8824 | 76 | 0.8343 |
| 0.8664 | 18.8235 | 80 | 0.8239 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1